Calculation of True Daily Motion Two Rules of the Brāhmasphuṭasiddhānta

Setsuro Ikeyama

Abstract

Brahmagupta, an Indian astronomer flourished in early 7th century, gives two rules for computing the true daily motion of the planets in his *Brāhmasphutasiddhānta* (BSS), chapter II, 41–42ab and 42cd–44. In this paper, I newly edited these parts using five manuscripts with the well known but not edited commentary composed by Prthūdakasvāmin who flourished in the 9th century, translated them into English, and gave mathematical commentaries.

Abbreviation for Astronomical Works

PS: *Pañcasiddhāntikā* of Varāhamihira (composed ca. 550)

BSS: Brāhmasphutasiddhānta of Brahmagupta (composed 628)

MBh: *Mahābhāskarīya* of Bhāskara I (composed before 629)

LBh: Laghubhāskarīya of Bhāskara I (composed after MBh?)

KhKh: *Khaṇḍakhādyaka* of Brahmagupta (epoch 665)

SDV: Śisyadhīvrddhidatantra of Lalla (composed ca. 750?)

SS: $S\bar{u}ryasiddh\bar{a}nta$ (composed ca. 800)

VS: Vateśvarasiddhānta of Vateśvara (composed 904)

SSI: Siddhāntaśiromaņi of Bhāskara II (composed 1150)

SSE: Siddhāntaśekhara of Śrīpati (composed ca. 1050)

I Introduction

I.1 Brahmagupta

Brahmagupta, the son of Jisnugupta, composed two astronomical books:

- The Brāhmasphutasiddhānta; according to verses 7 and 8 of chapter XXIV, Brahmagupta composed this comprehensive astronomical treatise at the age of thirty in Śaka 550≈A.D. 628 during the reign of King Vyāghramukha of the Cāpavamśa.
- 2. The *Khaṇḍakhādyaka*; a *karaṇa*, practical manual which gives pragmatic rules for astronomical computations, whose epoch is Śaka 587≈A.D. 665 (KhKh I, 3).

Setsuro Ikeyama

He was called Bhillamālavakācārya by Pṛthūdakasvāmin and by Utpala, who borrowed many phrases from Pṛthūdaka's commentary, in their commentaries on the *Khandakhādyaka*.

I.2 Prthūdakasvāmin

Caturveda Pṛthūdakasvāmin, the son of Madhusūdana Bhaṭṭa wrote commentaries on the two works of Brahmagupta, the $Br\bar{a}hmasphuṭasiddh\bar{a}nta$ and the $Khaṇdakh\bar{a}dyaka$. He refers to Śaka 786 \approx A.D. 864 and Kurukṣetra in his examples (udāharaṇas) in the commentary on the $Khaṇdakh\bar{a}dyaka$. He also uses the solar eclipse on 4 March 862 in the commentary on KhKh V, 1–2. He refers to Kānyakubja and Sthāṇvīśvara in his commentary on BSS XXI, 10 but these references seems to come from the lost commentary of Balabhadra.

$I.3 \quad Br\bar{a}hmas phut as iddh\bar{a}nta$

The $Br\bar{a}hmasphutasiddh\bar{a}nta$ is a comprehensive astronomical treatise consisting of 25 chapters.

Commentaries on this book were written by Balabhadra and Pṛthūdakasvāmin. Balabhadra's commentary is lost and only some verses quoted by Pṛthūdakasvāmin and Utpala and some passages in Arabic by al-Bīrūnī are known. There is also an anonymous commentary on the first ten chapters (Daśadhyayi), and another on the kuṭṭakādhyāya.

An edition of the *Brāhmasphuṭasiddhānta* with Pṛthūdaka's commentary is in progress by the present author and its first part (chapter XXI) is going to be published as supplements of *Indian Journal of History of Science* in March 2003. This part of the edition will be included in my future edition of the whole chapter II.

There are other three editions of the *Brāhmasphutasiddhānta*: one by Sudhākara Dvivedin (Dvivedin 1902) and two by Ram Swarup Sharma (Sharma 1966 and 1968). Let us compare their text of BSS II, 41–44:

Dvivedin's edition (Dvivedin 1902, pp. 39–40) runs: grahamandakendrabhuktir jyāntaraguņitā "dyajīvayā 214 bhaktā | labdham sphuṭaparidhighnam bhagaṇāmśahṛtam kalābhis tu || 41 mṛgakarkyādāv ūnādhikā svamadhyamagatiḥ sphuṭā 'rkendvoḥ | śīghragatim mandaphalasphuṭabhuktyūnām kujādīnām || 42 śīghraphalam bhogyajyāsaṅguṇitam tv ādyajīvayā vibhajet | phalaguṇitam vyāsārdham vibhājayet śīghrakarṇena || 43 labdhonā śīghragatiḥ sphuṭabhuktir bhavati labdham adhikam cet | śīghragateḥ śīghragatiḥ labdhāt saṃśodhya vakragatiḥ || 44

Pingree's explanation in the *Dictionary of Scientific Biography* (Supplement I, p. 569) is based on this edition.

Sharma's 1966 edition (Sharma 1966, vol. II p. 210) is exactly the same as Dvivedin's

SCIAMVS 4

edition except:

41d: bhagaṇāmśa360hṛtam ('360' inserted)43d: vibhājayec chīghra°(sandhi corrected).

Sharma's 1968 (Sharma 1968, pp. 37–39) edition reads: grahakendrabhuktijyākaraguņitādyajīvayā bhaktā 214 | labdham sphuṭaparidhiguṇam bhagaṇāmśahṛtam kalābhis tu || 41 mṛgakarkādyād ūnādhikā svamadhyamagatiḥ sphuṭārkemdoḥ | śīghragatimamdaphalasphuṭabhuttyunām kujādinā || 42 śīghraphalam bhogyajīvāguņitā māghajīvayā vibhajet | phalaguņitam vyāsārddham vibhājayet śīghrakaraṇena || 43 labdhonāśīghragatisphuṭabhuktir labdham adhikam cet | śīghragateḥ śīghragatiḥ labdhā saṃśodhya vakragatiḥ || 44

This arbitrary edition does not make any sense.

P. C. Sengupta quotes II 41–44ab, not showing any sources, in his introduction added to the reprint of the English translation of the $S\bar{u}ryasiddh\bar{a}nta$ by E. Burgess (Gangooly 1935, pp. xxiii–xxiv). His quotation is similar to Dvivedin's edition but includes some differences:

41d: °hatam for hrtam

42b: °ārkendoh for °ārkendvoh

43a: °phalabhogya° for °phalam bhogya°

43b: °gunitām for °gunitam

43c: °ārddham for °ārdham.

The third and fourth differences are significant.

I.4 Manuscripts

Manuscripts I used for the present edition are:

I: India Office Library Sanskrit 2769.

 \mathbf{P}_1 : Pingree 15. Copied in 1960 from VVRI Library no. 1781 by Shri Keshawanand (KN) and compared by Shri Dindayal (DY).

P₂: Pingree 16. Copied in 1973 from ff. 1–226 of BORI 339 of 1879/80.

R: RORI Jodhpur 35182.

V₁: Vārāņasī, Sarasvatī Bhavana 98256. A copy of I.

All of them include both BSS verses and Pṛthūdakasvāmin's commentary. I also reffered to Dvivedin's edition (D) for BSS verses and Sharma's 1966 edition (S) for Prthudaka's commentary (Sharma 1966 pp. 210–212).

I.5 Editorial Notes

The base passages (mūlas) of the $Br\bar{a}hmasphutasiddh\bar{a}nta$ on which Prthūdaka comments are printed in boldface. Quotations, including verses cited from elsewhere in

the Brāhmasphutasiddhānta, are printed in italic.

Pointed brackets ($\langle \rangle$) enclose my additions; square brackets ([]) are used to delete word(s).

In addition to these, I used parentheses in the translation which enclose explanatory additions.

I entered almost all of the variants in the apparatus including errors of sandhi, but did not record changes caused by my insertion or deletion of danda or common changes of letters such as: $v \Leftrightarrow b$; \dot{n} , $\tilde{n} \Leftrightarrow m$.

II BSS II, 41–42ab

II.1 Text

 $(IV_1 65v l. 5; R 34r l. 8; P_2 p. 59 l. 13; P_1 p. 181 l. 9)$

idānīm¹ sarvagrahāņām bhukter mandaphalena²
 $^{>}$ sphuţīkaraņāyāryām³ sārdhām⁴ āha ||

```
grahamandakendrabhuktir<sup>5</sup>
jyāntaraguņitādyajīvayā<sup>6</sup> bhaktā<sup>7</sup> |
labdham sphuṭaparidhiguṇam
bhagaṇāmśahṛtam<sup>8</sup> phalakalābhiḥ<sup>9</sup> || 41
mṛgakarkyādāv ūnā-
dhikā svamadhyamagatiḥ<sup>10</sup> sphuṭārkendvoḥ<sup>11</sup> | 42ab<sup>12</sup>
```

grahasya mandakarmani yat kendram¹³ [▷]tad¹⁴ **grahamandakendram**^{⊲15} | ta- S p. 210 l. -6 sya **bhukti**h¹⁶ | yathā madhyagrahāt svamandoccam višodhya kendram bhavaty evam¹⁷ grahamadhyabhukteh¹⁸ svamandoccabhuktim¹⁹ višodhya kendrabhuktir IV₁ 66r bhavati | sā ca²⁰ **jyāntaraguņitā**²¹ kāryā | avišeṣamandakarmaṇi²² bhujajyāyām kriyamāṇāyām²³ yaj²⁴ jyāntaram abhavat²⁵ tena²⁶ guṇanīyety²⁷ arthaḥ | tata **ādyajīvayā bhaktā**²⁸ kāryā²⁹ | **ādyajīvā**³⁰ prathamam³¹ jyārdham manuyamalā ity arthaḥ 214³² | tato yal **labdham** tat [▷]**sphuṭa**svamanda**paridhi**nā **guņ**itam³³

¹ya is inserted after this by DY P₁ ^{2°}palena I ^{3°}āryā P₁ ⁴between ▷ and ⊲: °karaņāya sārddhām āryām RP₂ ^{5°}muktir IV₁; °ktiḥ R; °kti P₂ ^{6°}jīvanāyā IV₁; svāmtaraguņitādyujīvayā RP₂; °dyājīvayā P₁ ⁷bhuktā RP₂; bhaktāḥ P₁ ^{8°}hṛttaṃ IV₁; °hataṃ P₂ ⁹phalaṃ kalā° IV₁ ^{10°}gati IV₁; svamadhyagati R; svayamadhyagati P₂ ^{11°}tākendroḥ R; °tākedvoḥ P₂ ¹²om. this half verse P₁ ¹³om. RP₂; kendra P₁ ¹⁴tat R ¹⁵between ▷ and ⊲: om. IV₁ ^{16°}ktiḥr P₁ ¹⁷eva R ¹⁸grahamandabhuktais (°ktai V₁) IV₁; °kte P₂; °ktaiḥ P₁; °ktau S ^{19°}occaṃ bhu° RP₂; °kti P₁ ²⁰sārddha for sā ca RP₂; om., va is inserted by DY P₁ ^{21°}taraṃ guņi° RP₂ ²²atra śeṣa° R; avaśeṣa° P₂S ²³kriyā° P₁ ²⁴yat IV₁; ya P₂ ²⁵abhavaṃty IV₁; bhavet S ²⁶ena IV₁; te P₁; tad S ²⁷guṇanoyety IV₁ ²⁸bhuktā R ^{29°}yāḥ P₁ ^{30°}jīvayā IV₁; ādyā jīvayā P₁; om. S ^{31°}thama I ³²om. IV₁ ³³gunām P₂

bhaganāmśahrtam^{d1} ca krtvā yat² phalam tāh kalāh³ | tābhih **phalakalā**bhih⁴ | mrgakarkyādau⁵ sthite svamandakendre yathāsamkhyam $\bar{\mathbf{u}}n\bar{\mathbf{a}}dhik\bar{\mathbf{a}}^6$ S p. 211 satī⁷ svamadhya(ma)gatir⁸ mandasphutā bhavati | bhaumādīnām sā manda- P₁ p. 182 R 34vsphutaivocyate⁹ | ravicandrayos tu saiva paramārthasphutā¹⁰ yatas tau mandapratimandale bhramata¹¹ iti \parallel

atreyam vāsanā | kaksāmandale¹² yatra pradeše ravir¹³ vartate¹⁴ candro¹⁵ vā bhaumādīnām svasīghranīcoccavrttamadhyam¹⁶ vā tatra¹⁷ yaj¹⁸ jyāntaram tena saha trairāśikam | [▷]yadi tat⟨t⟩vayamasamkhyābhir¹⁹ liptābhir jyāntaram²⁰ labhyate \tan^{21} mandakendrabhuktiliptābhih²² kim iti | dvitīyam trairāśikam | yadi sastiśatatrayavrtte²³ phalam²⁴ jyārūpam etāvat svamandoccanīcavrtte²⁵ kiyad iti $P_{2 p}$. 60 | tatas²⁶ trtīyam trairāśikam^{⊲27} | yadi manuyamalatulyasya²⁸ jyārūpasya²⁹ tattvayamasamkhyāś³⁰ cāpaliptā bhavanti³¹ tad asva³² kivatva iti³³ |

evam prathamatrairāśike tattvayamasamkhyo³⁴ ⊳bhāgahāras trtīye gunakārah | atas³⁵ tayor nāśe³⁶ krte mandakendrabhukter³⁷ jyāntaram gunakāra³⁸ ādyā³⁹ jīvā bhāgahārah⁴⁰ | tato yad āptam tasya svamandaparidhir⁴¹ gunakārah sastiśatatrayam⁴² bhāgahārah⁴³ | phala⟨sya⟩⁴⁴ svabhuktāv⁴⁵ apacaya upacayo⁴⁶ vā | kakṣāmaṇḍalāt⁴⁷ pratimaṇḍalam⁴⁸ upari yatra tatra bhukter apacayo yatrādhas $IV_1 66v$ tatropacayah⁴⁹ | ata⁵⁰ eva⁵¹ coktam⁵² mrgakarkyādāv⁵³ ūnādhikā svamadhyamagatir⁵⁴ iti | etat sarvam⁵⁵ yathānyastesu⁵⁶ kaksāmandalādisu⁵⁷ pradaršayed upapannam ca |

 $^{^{1}}$ between \triangleright and \triangleleft : sphutamamdaparidhigunitam bhaganāmśahrtam IV₁; sphutasvamamdaparidhinā gunānāmśahrtam R; sphutasvamamdaparidhinā gunām bhāmśahatam P2; sphutamamdaparidhiguṇam bhagaṇāmśahatam P1; sphuṭamamdaparidhiguṇabhagaṇāmśahṛtam S²yatat P1; yat tat S ³kālās R; kalās P₂ ⁴phalā[°] P₁ ⁵°karkyadau I; [°]karkādau P₂; stagavākyādau P₁ ^{6°}dhiko P₂; ūnām [p. 182] dhikā P_1 ⁷sati, ti is underlined and commented by the scribe: tī P_2 ⁸°madhyagatir IV₁; svayamadhyagatir P₂; °madhyagati P₁; °madhyagatih S⁹°sphutair vaivyucyate P₂; °sphute taity ucyate P₁; °sphuțaivety ucyate S^{$10\circ$}ārtheyo sphuțā IV₁; °ārthyasphuțā S^{$11\circ$}matah¹²kakṣyā° $V_1 RP_2$ ¹³ravi P_2 ¹⁴varttate IV₁ RP₂; vatate S ¹⁵candrau P_1 ¹⁶svamamdanīcoccamadhyakrtam P₁, krtam corrected to vrttam by DY; S=DY ¹⁷yatra RP₂ ¹⁸om. IV₁; ya P₂P₁ ¹⁹tatva° RP₂P₁ ²⁰jyātaram P₁ ²¹tadā S ^{22°}liptābhi P₂; °bhuktih liptābhih P₁ ^{23°}krte P₁ ²⁴yat + phalam IV₁P₁S^{$25\circ$}nīce vrtte RP₂; °krte P₁²⁶tatah P₁S²⁷between \triangleright and \triangleleft : om. IV₁^{$28\circ$}yamalātulya-RP₂ ²⁹yāphalasya RP₂P₁; jyāphalasya S ³⁰tatva[°] IV₁RP₂ ³¹bhavati S ³²tadāsya for tad asya P_1 ³³for kiyatya iti: kiyatyadraty P_1 ; kiyat prabhavaty S ³⁴tatva° IV₁RP₂; °yamam samstho P_1 35 s P₂ 36 nnāśe R; nnāśa- P₂ $^{37\circ}$ kte R $^{38\circ}$ kāraḥ IV₁; $^{\circ}$ kārā R; $^{\circ}$ kārar P₂ 39 yā R 40 bhāgā $^{\circ}$ RP₂ ⁴¹°dhi RP₂ ⁴²between \triangleright and \triangleleft : om. P₁S ⁴³bhāgā° P₂ ⁴⁴phalam IV₁RS; ra(?) phalam, '(?)' is given by the scribe P_2 ; phala P_1 ^{45°}bhaktāv P_1 ⁴⁶for apacaya upacayo: upacayo pacayayo IV₁; upacayāpacayo corrected to upacayo pacayo by DY P_1 ; upacayāpacayo S⁴⁷kaksyā[°] IV₁; kaksyān ma° R; kakṣān ma° P₂ 48 °dalas P₁ 49 tatrāpa° P₁ 50 te P₁ 51 evam P₁ 52 evoktam (ca om.) RP₂ ⁵³°ādau IV₁; mrgakaksyārkādāv (°kaksā° P₂) RP₂ ⁵⁴°madhyagatir IV₁P₁S ⁵⁵sarva P₂ $^{56\circ}$ nyestesu IV₁; yathātattesu P₁S 57 mkakṣyā° IV₁R

Setsuro Ikeyama

yadi nāma candramandakendrabhuktir¹ bahujyāntaravyāpinī² tatra kecic³ candrākrāntajyāntarād⁴ ārabhyātītajyāntarair⁵ bhukteh⁶ sphutīkaraņam icchanti⁷ | apare tata evāgāmijyāntarair⁸ [▷]*anye⁹ 'tītaisyadjyāntaraih¹⁰ sphutayoś¹¹ ca¹² samyogārdhena^{*13} karma¹⁴ kurvate | evam¹⁵ āgāmijyāntarair api sphutayā¹⁶ saha yogārdhena | apare¹⁷ tu punar^{⊲1819} gatāt kālānayane²⁰ 'tītair²¹ jyāntaraih P_{1 P}. 183 [⊳]sphutayāgamyāc²² ca kālānayane^{⊲2324} nāgatajyāntarasphutayā²⁵ candrabhuktyā²⁶ karma kurvate²⁷

 $na^{28} ca^{29} sphuțabhuktih^{30} kṣaṇam apy^{31} ekā^{32} vaktum śakyate^{33} kakṣāmaṇḍala$ pratimandalayor³⁴ anyathāsamsthānāt³⁵ | tasmād anavasthāprasangah³⁶ syād ity $^{\triangleright}\bar{\rm a}c\bar{\rm a}ryeņa$ candrākrāntajyāntareņaiva
37 bhuktijyānītā³⁸ svalpāntaratvāt³⁹ | evam ravyādīnām api vikalp[∢]āh⁴⁰⁴¹ sambhavanti yadi nāmātyalpam antaram⁴² teşām bhukter alpatvād iti | yac cāpakaranam⁴³ asyām⁴⁴ āryāvām⁴⁵ ādyajīvayā sthirayopanibaddham tad anyesām⁴⁶ jyāntarānām⁴⁷ asambhavād yato⁴⁸ bhuktijyāphalam⁴⁹ subahv api⁵⁰ manuyamalānām⁵¹ liptānām tulyam⁵² na bhavati⁵³ \mid tasmāt⁵⁴ sarvam⁵⁵ upapannam iti⁵⁶ \parallel

II.2Translation

Now he tells one and half aryas for the correction of the daily motion of all the planets by the manda equation.

The daily motion of the manda anomaly of a planet is multiplied by the difference of the sines and divided by the first sine.

¹°kti P₁; manda om. S ²°taram vyā° IV₁; °pinā P₂ ³kendravac S ⁴°krāmti° RP₂ ⁵ābhyā° corrected to ārabhyā°by DY P₁ ⁶°ktaih IV₁; °ktih RP₂ ⁷idamty IV₁; ichamty RP₁ ⁸evāgami° $\mathrm{RP}_2 \quad ^9\mathrm{abhye} \ \mathrm{P}_2 \quad ^{10}\circ \mathrm{syatjy}\bar{\mathrm{a}}^\circ \ \mathrm{R}; \ ^\circ \mathrm{syatjy}\bar{\mathrm{a}}\mathrm{ntarai} \ \mathrm{P}_2 \quad ^{11}\mathrm{sphuț}\bar{\mathrm{a}} \ \mathrm{y}\bar{\mathrm{a}}\mathrm{h} \ \mathrm{R} \quad ^{12}\mathrm{sva-} \ \mathrm{R} \quad ^{13}\mathrm{between} \ \star\mathrm{s:}$ om. P₁S¹⁴karmā P₁¹⁵after this is inserted: atītaih sphutāvā (°tavā S) P₁S¹⁶`tāvāh P₁ ¹⁷aparai P₂ ¹⁸manur P₁ ¹⁹between \triangleright and ⊲: om. IV₁ ²⁰kālana° P₁; kalāna°S ²¹titair P₁ $^{22\circ}$ gamyāś IV₁; °gamyā P₁ $^{23\circ}$ nayanai IV₁ 24 between ▷ and ⊲: sphuţayā gamyāvakalānayane S ²⁵nāgate jyāmtaragatayā sphutayā P₁S ²⁶°bhuktā P₁; °bhuktau S ²⁷kurute RP₂S ²⁸ta P₁ ²⁹va P₂; for na ca: tatra S ³⁰sphuțā bhukti RP₂; sphuțā bhuktih P₁S ³¹ath P₁; madhye S 32 ekam RP₂ 33 na is inserted before this RP₂ 34 kaksyā $^{\circ}$ V₁RP₂; $^{\circ}$ mamdalam prati $^{\circ}$ corrected to °mamdalaprati° by DY P₁ ³⁵ for anyathā: anyathā 'nyathā RP₂; iti yathā P₁ ³⁶ samga IV₁; rnavasthāpasamga P₂ 37 candrā om. S ${}^{38\circ}$ nītās RP₂ 39 tulyāmtaram tvād RP₂ 40 ...ās I; ...ā V₁; kalpāh P₁S⁴¹ between \triangleright and \triangleleft : om. IV₁⁴² amtare P₁S^{43°} kāraņam S⁴⁴ om. P₂^{45°} yāyam RP_2 ⁴⁶tvadanye[°] RP_2 ^{47°}taņām P_2 ⁴⁸yātā R; yate P_1 ^{49°}phalām P_1S ⁵⁰for subahv api: tuvadkāpi P₁; śuvadvāpi S⁵¹manuyamalā- RP₂⁵²tulyo corrected to tulyām by DY P₁; tulyā S 53 bhavanti S $^{-54}$ tasmāgat P1; tasmād uktam S $^{-55}$ svarvas P1 $^{-56}$ iti (i P2) 4;11,2 RP2

The result is multiplied by the corrected circumference (of its manda epicycle) and divided by the degrees of a rotation. The mean daily motion of the sun or the moon becomes true when it is decreased or increased by the minutes of the result (as it is in the anomalistic semicircles) beginning with Capricorn (i.e., the fourth and first quadrants) or Cancer (i.e., the second and third quadrants) (respectively).

Whatever is the anomaly of the planet in the manda calculation, that is **the** manda anomaly of the planet; the daily motion of that (is discussed). As an anomaly is produced when one subtracts (the longitude of) its manda apogee from (the longitude of) the mean planet, in the same manner the daily motion of (manda) anomaly is produced when one subtracts the daily motion of its manda apogee from the mean daily motion of the planet. It is multiplied by the difference of the sines. The meaning is: whatever was the difference of the sines when the sine of the bhuja was being computed in the manda computation without a remainder (i.e., by iteration), it is to be multiplied by that. Then it is **divided by the first** sine. The first sine means the first sine, 214. Whatever is the result from that, that is **multiplied by the corrected circumference** of its manda (epicycle) and divided by the degrees of a rotation. Whatever is the result is (expressed in) minutes. By those minutes of the result, when its manda anomaly stands (in the anomalistic semicircles) beginning with Capricorn (i.e., the fourth and first quadrants) or Cancer (i.e., the second and third quadrants), its mean daily motion decreased or increased respectively is manda-corrected. In the case of (the planets) beginning with Mars the (result) is called only 'mandacorrected.' But that of the sun or the moon is completely corrected because these two rotate on only (their) manda eccentric circle(s).

Here is this explanation: At whatever place on (its) orbit is the sun, the moon, or the center of the sīghra epicycle of Mars etc., there there is the rule of three with the difference of the sines. If the difference of the sines is obtained by 225 minutes, then what is (obtained) by the minutes of the daily motion of the manda anomaly? The second rule of three: if a result in the form of a sine pertaining to a circle (whose circumference is) 360 (degrees) is this much, how much is it pertaining to its manda epicycle? Then the third rule of three: if 225 minutes of arc pertaining to (the result) having the form of a sine is equal to 214, then how much pertain to this (result)?

In this way, 225 is the divisor in the first rule of three and the multiplier in the third. Therefore, when these two are removed, the difference of the sines is the multiplier of the daily motion of the manda anomaly and the first sine is its divisor. Then whatever is obtained, the circumference of the manda (epicycle) is its multiplier and 360 is its divisor. The subtraction or addition of the result (is

Setsuro Ikeyama

made) to or from its own (mean) daily motion: wherever the eccentric circle is above the orbit, subtraction from the daily motion (is made, and) wherever (it is) below addition (is made). Therefore it is said: "its mean daily motion is decreased or increased (as it is in the anomalistic semicircles) beginning with Capricorn (i.e., the fourth and first quadrants) or Cancer (i.e., the second and third quadrants) (respectively)." One should illustrate all of this in the orbits and so on as they were set down (in a diagram); and it is demonstrated.

In the case that the daily motion of the manda anomaly of the moon entails many differences of sines, some (astronomers) want to make the correction of the daily motion by means of the differences of the past sines beginning with the difference of the sines occupied by the moon. Others (wish to make the correction) by means of the future differences of the sines, (and) others make the calculation by means of half of the sum (of the daily motions) corrected by means of the past and future differences of the sines; in this way, it is by means of half the sum together with (the lunar daily motion) corrected by the future differences of the sines. Others however make the calculation by means of (the lunar daily motion) corrected by the past differences of the sines when the calculation of the time is from a past (time) and by means of the lunar daily motion corrected by the future differences of the sines when the calculation of the time is from a future (time).

The true daily motion cannot be said to be the same even for a moment because the orbit and the eccentric circle are standing in the different relationship. Therefore, (thinking) 'there might be a suspiction of instability,' the sine of the daily motion is computed by the teacher with only the difference of the sines occupied by the moon because the difference is very small.

In like manner there occur also in the cases of the sun and so on doubts such as: 'if the difference is very small, it is because their daily motion is small.'

Whatever computation of the arc is mensioned in this $\bar{a}ry\bar{a}$ by means of a fixed first sine, that is because the other differences of the sines are impossible since the result of the sine of the daily motion when it is very large is not equal to the 214 minutes (of the first sine). Therefore, everything is demonstrated.

II.3 Mathematical Commentary

The rule described in these verses is sometimes called $j\bar{\imath}vabhukti$, 'daily motion calculated by means of Rsins'¹). In BSS this rule is used for correcting mean motion into 'manda-corrected' motion by the manda equation.

Figure 1 shows mean positions $(\bar{p}_1 \text{ and } \bar{p}_2)$ and manda-corrected positions $(p_1 \text{ and } p_2)$ of the planet in successive two days. The manda apogee (A) is fixed in this figure, so that the vernal equinox $(\gamma 0_1 \text{ and } \gamma 0_2)$ apparently changes its position by the daily motion of the manda apogee (v_A) .

We can compute the mean and manda-corrected daily motions of the planet $(\bar{v} \text{ and } v \text{ respectively})$ from v_A and mean and manda-corrected daily motions of

SCIAMVS 4

anomaly (the angular distance of the planet from A), (\bar{v}_{α} and v_{α} respectively):

$$\bar{v} = \bar{v}_{\alpha} + v_A,$$
$$v = v_{\alpha} + v_A.$$

Therefore, the difference between the mean daily motion and the manda-corrected daily motion is:

$$|\bar{v} - v| = |\bar{v}_{\alpha} - v_{\alpha}| = \varepsilon.$$

The main purpose of the $j\bar{i}vabhukti$ rule is to calculate this ε .

According to Prthūdakasvāmin, three 'rules of three' or proportions are used to compute ε (figure 2). First, D is calculated by means of a proportion which is called the 'first rule of three' in Prthūdaka's commentary:

$$I: \Delta J_{\alpha} = \bar{v}_{\alpha}: D,$$

where I is the interval of the Rsine table (225' in BSS) and ΔJ_{α} is the difference of the two successive tabulated Rsines containing the angle α .

Then D is reduced to d in the manda epicycle by means of the 'second rule of three'. Let c be the circumference of the manda epicycle expressed in degrees when the circumference of the standard circle is 360:

$$360: D = c: d.$$

And finally, assuming d to be $\sin \varepsilon$ $(R \sin \varepsilon)$, he convert it into an arc by means of the 'third rule of three':

$$J[1]: I = d(\approx \operatorname{Sin} \varepsilon) : \varepsilon,$$

where J[1] is the first tabulated Rsine (214 in BSS).

When these three proportions are combined, we get the formula Brahmagupta gives:

$$\varepsilon = \bar{v}_{\alpha} \cdot \frac{\Delta J_{\alpha}}{J[1]} \cdot \frac{c}{360}.$$

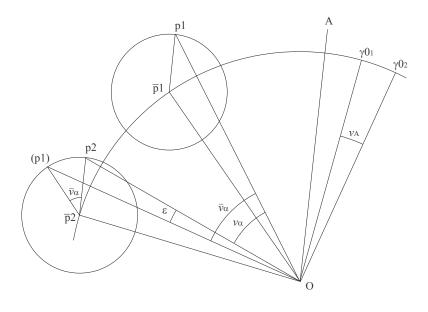


Figure 1:

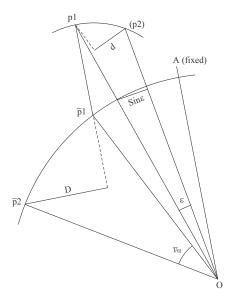


Figure 2:

III BSS II, 42cd–44

III.1 Text

(IV₁ 66v l. -2; R 34v l. -1; P₂ p. 60 l. -9; P₁ p. 183 l. 12; S p. 211 l. -11)

idānīm bhaumādīnām [▷]bhukteh¹ sphuţīkaranārtham^{⊲2} āryādvayam³ sārdham R 35r āha ||

```
 \begin{split} & \hat{s}\bar{i}ghragatim^4 \ mandaphala-\\ & sphuṭabhuktyunām^5 \ kujādīnām^6 \parallel 42cd \\ & \hat{s}\bar{i}ghraphalabhogyajīvā-\\ & saṃguṇitām^7 \ \bar{a}dyajīvayā^8 \ vibhajet \mid & IV_1 \ 67r \\ & phalaguṇitām \ vyāsārdham^9 \\ & vibhājayec^{10} \ chīghrakarņena^{11} \parallel 43 \\ & labdhonā \ \hat{s}\bar{i}ghragatiḥ^{12} \\ & sphuṭabhuktir^{13} \ bhavati^{14} \ labdham \ adhikaṃ \ cet \mid \\ & \hat{s}\bar{i}ghragateḥ^{15} \ \hat{s}\bar{i}ghragatiṃ \\ & labdhāt^{16} \ saṃśodhya \ vakragatiḥ^{17} \parallel 44 \end{split}
```

kujādīnām tārāgrahāņām¹⁸ sīghragatim¹⁹ kimbhūtām²⁰ | mandaphalasphutabhuktyūnām²¹ sīghraphalabhogyajīvāsamgunitām²² ca | satīm²³ vibhajet | kayā²⁴ | ādyajīvayā |

etad uktam bhavati | bhaumāder²⁵ grahasya pūrvapradaršitena²⁶ karmaņā yā²⁷ P_{2 P}. 61 mandaphalasphuṭabhuktis²⁸ tām svašīghrabhukteh²⁹ samšodhya³⁰ **mandaphala-** P_{1 P}. 184 **sphuṭabhuktyūnā**³¹ **śīghragati**r³² bhavati | tatas tām guṇayec³³ **chīghraphalabhogyajīva**yā³⁴ | grahasya sphutīkriyamānasya³⁵ yac³⁶ chīghraphalam bhavati

^{1°}te P₂ ²between \triangleright and \triangleleft : bhuktikaraṇārtham S ^{3°}yam P₁ ^{4°}gatir IV₁; [°]gati RP₂; [°]gatiņ corrected to gati by DY P₁ ^{5°}phalaṃ sphuṭabhuktyūnā IV₁; [°]bhuktānāṃ RP₂ ⁶after this is inserted: ca R ⁷in P₁ KN gives the same text as D but DY corrects it to the form seen in IV₁RP₂ which I employed here. ^{8°}vayāsyā R; [°]vayāyā P₂ ^{9°}rdhaṃ corrected to [°]rdhyaṃ by DY P₁ ¹⁰ [°]yet RP₂; vibhājayet corrected to vibhājyaye by DY P₁ ¹¹ śīghra° RP₂; [°]karņena P₁ corrected to [°]karaņena by DY ^{12°}gati IV₁R; [°](ga)ti, (ga) is underlined and commented by the sucribe: not in ms. P₂ ^{13°}ktir P₁ corrected to [°]kti by DY ¹⁴om. RP₂ ^{15°}gatera I; [°]gate V₁; [°]gāvaḥ R ^{16°}dhān I; [°]dhā RP₂; [°]dhāt corrected to dhā by DY P₁ ¹⁷cakra° R ¹⁸tāra° P₁ ^{19°}gati P₁; [°]gatiḥ S ^{20°}bhūto P₁; [°]bhūtānāṃ S ²¹maṃdaphalaḥ sphuṭabhaktīnāṃ P₁; [°]bhuktīnāṃ S ^{22°}bhojya° IV₁P₁; [°]guṇitā S ²³satī P₁S ²⁴kṣaya R; kṣayaḥ P₂ ^{25°}mādre P₁ ^{26°}darśanena R; [°]darśya tena P₂; [°]darśitane P₁ ²⁷om. S ^{28°}sphuṭā bhuktis IV₁; me[p. 184]daphala°bhuktiḥ P₁ ^{29°}ktes I; [°]kte V₁R; svāṃ šīghrabhukte P₂; [°]bhuṃkte P₁ ³⁰viśodhya P₁S ^{31°}bhuktīnāṃ corrected to [°]bhuktyānāṃ by DY P₁; [°]bhuktīnāṃ S ³²šī(ghra)[°], (ghra) is underlined and commented by the scribe, "not in ms." P₂ ^{33°}ye IV₁R; [°]yet P₁ ^{34°}bhojya[°] IV₁; [°]bhojayā P₁; [°]bhogyayā S ^{35°}mānamsya P₁ ³⁶ya P₁

tasya phalasya¹ jyāyām² kriyamānāyām³ yaj⁴ jyāntaram⁵ gunakārah⁶ sambhavati⁷ $| s\bar{a} \hat{s}\bar{i}ghraphalabhogyaj\bar{i}vety ucyate^8 | tay\bar{a} mandaphalasphutabhuktyunam⁹$ $\hat{sig}hragatim^{10}$ samgunayy $\bar{a}dyaj\bar{v}ay\bar{a}^{11}$ vibhajet¹² | manuyamalair ity arthah | tato yat phalam tena phalena gunitam vyāsārdham¹³ vibhājayec chīghra-

karņena¹⁴ | tato 'pi yal labdham¹⁵ tena sarvadā sīghragatir¹⁶ ūnā kartavyā¹⁷ | sā conākrtā¹⁸ grahasya **sphutabhuktis** tatra¹⁹ pradeśe²⁰ sthitasya **bhavati**

labdham adhikam cec chīghragateh²¹ | phalagunitād²² vyāsārdhāc²³ chīghrakarņahrtād²⁴ yal labdham²⁵ tad²⁶ yadi²⁷ sīghragater atyadhikam²⁸ bhavati S p. 212 tadā sīghragatim²⁹ labdhāt³⁰ samsodhya vakragatir³¹ bhavati | viparītasodhane³² IV_1 67v krte 'vaśes \bar{a}^{33} vakrabhuktir³⁴ bhavati³⁵ | tadaivaitat³⁶ sambhavatīty arthah³⁷ | yadi nāmāsya³⁸ bhaumasyāyam višesah | prathamam³⁹ mandaphalam uktavad⁴⁰ $\bar{a}n\bar{v}a^{41}$ tadardham⁴² madhyabhukt $\bar{a}v^{43}$ mam dhanam v \bar{a}^{44} k $\bar{a}ryam$ | tatas tadūnasīghrabhuktim⁴⁵ ⊳sīghraphalārdhajabhogyajīvāsamgunitām⁴⁶ ādyajīvayā⁴⁷ vibhajet | labdhenoktavat sphutabhuktim⁴⁸ samānīya⁴⁹ tayā saha mandaphalārdhasphutabhukter yad antarārdham⁵⁰ tat⁵¹ tatraivaikakarmakrtabhuktau⁵² dhanam rnam $v\bar{a}^{53}$ kāryam | yadi mandasphutabhukter adhikā sphutabhuktis⁵⁴ tad dhanam anyatharnam⁵⁵ iti⁵⁶ | evam krte dvikarmasphuțā⁵⁷ bhaumabhuktir bhavati | tām $P_{1 p. 185}$ madhyām parikalpya⁵⁸ sesagrahavad⁵⁹ bhukter⁶⁰ api⁶¹ sphutīkaranam⁶² iti | kaksā- R_{35v} mandalādīni⁶³ yathāvinyasya⁶⁴ sarvam⁶⁵ darśayet⁶⁶

¹phalam P₁ ²for phalasya jyāyām: phalajyāyām S ³kryamoņāyām corrected to kriyamoņāyām by DY P₁ ⁴yat R; ya P₁ ⁵°ntāram IV₁ ⁶°kāras I; [°]kāra V₁P₂; [°]karah P₁ ⁷sa bhavati IV₁P₁ ⁸uccyate I; for °jīvety ucyate: °jīvayocyate P₂ ⁹°bhuktīnām P₁; sphuta om. S ¹⁰°gati P₁ ¹¹ $^{\circ}$ yyājīvayā IV₁; $^{\circ}$ guņajyādya $^{\circ}$ RP₂ $^{12\circ}$ jeran I; $^{\circ}$ jeranū V₁; vibhajyajet P₁ 13 after this is inserted: sad IV₁P₁, tad S; °rddha RP₂ ¹⁴chīghram karņena RP₂ ¹⁵°dhām P₁ ¹⁶°gatih IV₁; °gatin P₁ ¹⁷karttavyā IV₁RP₂S ¹⁸conā rņa satī RP₂ ¹⁹tata P₁; tatah S ^{20°}deśo P₁ ²¹cet śīghraghateh $(P_1 \circ gate) P_2 P_1 = {}^{22} \circ t \bar{a} t R$; phalam gunitāt P_2 ; $\circ t \bar{a} da P_1 = {}^{23} \circ dh \bar{a} IV_1 R$; $\circ r dha$ - $P_1 = {}^{24} \circ h a t \bar{a} d$ P_2 ; °karnād gatād P_1 ²⁵ for yal labdham: ālabdhe R; yalabdhe P_2 ; yac ca labdham P_1 ²⁶ tat P_1 ²⁷yati IV₁; om. P₁S ²⁸apy adhi^{\circ} IV₁P₂; athādhi^{\circ} P₁S ^{29°}gati P₂P₁S ³⁰labdhā R; labdhām P₁S ³¹°gati P₁ ³²°sodhane P₁ ³³ca śesā R; 'thā P₁; 'py S ³⁴°kti P₁; avakra°S ³⁵bhavati corrected to bhavamti by DY P₁ 36 tad evaitat P₂ 37 a P₂ 38 nāma (asya om.) RP₂P₁S $^{39\circ}$ thama IV₁P₁S; pratha P₂ ⁴⁰ for mandaphalam uktavad: °phalasuktatad corrected to °phalasukrtad by DY P₁; mandaphalasamskrtād S⁴¹ānīmya P₁^{42°}ardha P₁^{43°}bhuktā P₁^{44°}om. IV₁^{45°}ūnam śī[°] jīvāyā (°ārddham bhojya° P2) RP2 48°kti P1; °ktih S 49 °nīyam yadi P1 50 ambharārdha P1 ⁵¹om. P₂S ⁵²tattraikakarma° IV₁; °krt bhuktau P₂; tatraivaike karmakrta°, karma corrected to karmma by DY P₁; tatraivaike karmakrta[°] S ⁵³yā IV₁ ⁵⁴°ktih P₁ ⁵⁵anyarnam V₁; [°]anyathārnam RP_2P_1S ⁵⁶ity artham, artham crossed out by DY P_1 ⁵⁷°karma° corrected to °karmma° by DY P_1 58 kalpyā R; °kalpā P_2; pari (kalpya om.) P_1S 59 śeśam graha
° P_2; °grahavat tad P_1S 60 kte
 P_2 61 om. R 62 °karanam corrected to °karanām by DY P₁ 63 kaksyā° RP₂; °ādīna P₁ 64 °vinasya $P_1 = {}^{65}$ sarva $P_2P_1 = {}^{66}$ pradarśa° P_1S

iti |

atreyam¹ vāsanā | mandaphalasphuto² graho yatra pradeše kaksāmandale³ var $tate^4 tatra \dot{sighranicoccavrttamadhye}^5 krte tatparidhisighrapratimandalaparidhyor^6$ yatra sampātas⁷ tatra sphuto grahah | tasya svasīghroccarekhayā⁸ sahāntaram yat⁹ tat¹⁰ pratidinam¹¹ upacīyate¹² svasīghrabhuktimandaphalasphutabhuktyor¹³ IV_1 69r(!) antareņa | yatah śīghram¹⁴ śīghrabhuktyā yāti¹⁵ prāg mandasphuto mandasphutabhukty \bar{a}^{16} c \bar{a} to¹⁷ mandasphutabhukty $\bar{u}n\bar{a}^{18}$ ś \bar{s} ghragatih¹⁹ kriyate | yac²⁰ ca²¹ tayor antaram sīghrakendrabhuktir²² bhavati | sā ca sīghrakendrabhuktih²³ sphutīkriyate | tatra²⁴ yaiva²⁵ svaśīghranīcoccavrttasya²⁶ madhyagā śalākā²⁷ saivāvadhitvena parikalpitā²⁸ ⊳phalacāpakarane | yatas tata^{⊲29} eva yāvān³⁰ viprakarsas tāvad³¹ eva grahaphalam³² atas³³ tata³⁴ evāvadheh³⁵ kramajyā pravartate³⁶ phalacāpakaraņe | etac ca prāg evoktam³⁷ sīghraphalānte yaj³⁸ jyāntaram³⁹ tena trairāsikam⁴⁰ | yadi P₂ p. 62

tato dvitīvam trairāśikam⁴⁶ | vadi⁴⁷ manuvamalais⁴⁸ tattvavamatulvāś⁴⁹ cāpaliptā bhavanti⁵⁰ tal labdhajyākhandena⁵¹ kim iti | $atra^{52}$ prathame⁵³ trairāśike⁵⁴ tattvayamasamkhyo⁵⁵ bhāgahāro⁵⁶ dvitīye⁵⁷ guņakārah | atas⁵⁸ tayor⁵⁹ nastayoh⁶⁰ śīghrakendrabhukter⁶¹ jyāntaram guņakāra⁶² ādyajīvā bhāgahārah | phalam prati- $P_{1 p. 186}$ mandalasthagrahapradesé 63 sphutā⁶⁴ sīghrakendrabhuktih⁶⁵

tattvayamais⁴¹ tajjyāntaram⁴² labhyate tac⁴³ chīghrakendrabhuktiliptābhih⁴⁴ kim⁴⁵

¹tatreyam IV₁P₁S $^{2\circ}$ phalah sphuto P₁ 3 kakṣyā $^{\circ}$ RP₂ 4 pravarttate IV₁; varttate RP₂S 5 śīghroccanīcocca° IV₁S $^{6\circ}$ śīghre prati° R; °śīghre pratimamḍalaparidhau P₂ $^{7\circ}$ tah P₁ $^{8\,\circ}$ ś
īghrayoccarekhāyām IV_1; °rokhayā P_1; sva om. S $^{-9}$ yatas IV
_1 $^{-10}$ om. RP
_2 $^{-11\,\circ}$ dinas P_1 $^{12}\bar{\mathrm{u}}\mathrm{pa}^{\circ} \text{ corrected to upa}^{\circ} \text{ by DY P}_{1} \quad ^{13}\mathrm{sva}\acute{\mathrm{srghre bhukti}}^{\circ} \mathrm{R}; \mathrm{sva}\acute{\mathrm{srghre bhuktibhukti}}^{\circ} \mathrm{bhuktjaur P}_{2};$ °phalāsphuţabhuktor P_1 ¹⁴om. IV₁ P_1S ¹⁵di corrected to yadi by DY P_1 ; S=DY ¹⁶manda om. P_2 ¹⁷vāto RP_2P_1 ; bhavati S ¹⁸mamdaphalasya sphuta[°] RP_2 ; mamdaphalam bhuktyūnā P_1 ; mandaphalabhuktyūnā S^{19°}gati IV₁²⁰yena RP₂; yac corrected to ya by DY P₁²¹for yac ca: tatra S^{22°}kti P₁^{23°}kti R²⁴om. P₁²⁵yeva P₂; caiva S^{26°}śīghroccanīcavrtta[°] RP₂; [°]krtasya corrected to vrtasya by DY P₁; sva om. S 27 śālākā P₁ 28 pari om. IV₁; °pitāḥ P₁ 29 between ▷ and \triangleleft : °karane yatas tatas tata IV₁; °karanāya tam atas tata R; °kranāya atas ta P₂ ³⁰pādān RP₂ 31 tāvad corrected to tavad by DY P₁ $^{32\circ}$ phalas P₂ 33 om. P₂; atahs corrected to atas by DY P₁ 34 vata P₁; tatra S $^{35\circ}$ dhe IV₁; eva vedheh P₂ $^{36\circ}$ varttate IV₁RP₂S 37 evokta IV₁P₁S 38 ya P₁ ³⁹jyāphalām P₁; jyāphalam S⁴⁰trai om. P₁⁴¹tatvayamalais IV₁; tatva[°] RP₂; tatrayamalaih P₁; tattvayamalaih S 42 tatjyā° RP₂; tajyā° P₁ 43 ta IV₁RP₁ $^{44\circ}$ bhi IV₁P₂ 45 kvim IV₁ 46 om. P₁S ⁴⁷om. P₁S ⁴⁸yamalaih (manu om.) P₁S ⁴⁹tatva[°] IV₁P₁; tatvayamalatulyāś R; tatrayamalatulyās P₂ ⁵⁰bhavati IV₁ ⁵¹°khamdakena RP₂; °jyām khandane P₁; °khandane S ⁵²atha RP₂ ^{53°}thama RP₂ ^{54°}ko P₁S ⁵⁵tatva[°] IV₁R; tatvayasamkhyo P₂; tatvasamkhyo P₁; tattvasāmkhyo S ${}^{56}bh\bar{a}g\bar{a}^{\circ}$ P₁ ${}^{57\circ}yo$ P₁S ${}^{58}om$. IV₁; tatas P₁S ${}^{59}tayo$ P₂ ${}^{60}om$. RP₂ ${}^{61\circ}mukter$ IV₁ 62 kārah IV₁P₁ 63 maņdalā P₁ 64 sphuta- P₁S 65 kendra om. S

sā ca¹ \triangleright kakṣāmaṇḍale² pariṇamyate^{\exists 34} | tadartham uktaṃ⁵ **phalaguṇitaṃ**⁶ IV₁ 69v **vyāsārdhaṃ⁷ vibhājayec**⁸ **chīghrakarṇena**⁹(iti) trairāśikam idam¹⁰ | tato¹¹ yal¹² labdhaṃ sā śīghrakendrabhuktiḥ sphuṭā¹³ kakṣāmaṇḍale¹⁴ | sā ca¹⁵ graha-śīghrasphuṭagatyor¹⁶ antaram | ata eva śīghragateḥ¹⁷ saṃśodhya¹⁸ \triangleright grahasya sphuṭā bhuktir^{\exists 19} bhavati |

labdham²⁰ adhikam cec²¹ chīghragater²² yadā bhavati tadā viparītašodhane krte vakrabhuktir²³ bhavati yasmāc²⁴ chīghrakarņas tadālpo²⁵ bhavati kakṣāmaņḍalasyoparisthitatvāt²⁶ | phalaguņitam²⁷ vyāsārdham²⁸ vibhājayec²⁹ chīghrakarņena³⁰ yāvat kriyate tāvac³¹ chīghragater apy adhikā³² šīghrakendrabhuktiḥ sphuṭā bhavati dṛgbhedasyādhikatvāt | svamadhyagateḥ³³ kakṣāmaṇḍalāvasthitivaśena³⁴ graho 'pi ▷prāgdinādhyāsitapradeśād³⁵ avalambitaḥ^{⊲3637} paścād upalabhyate ▷śīghragatišīghrakendrasphuṭabhuktyantareṇa | ata^{⊲38} uktam labdhāt³⁹ samśodhya śīghragatim⁴⁰ vakragatir⁴¹ iti |

sarvam upapannam⁴² \parallel

III.2 Translation

Now he tells two and half āryās for the correction of the daily motion of (the planets) beginning with Mars.

One should divide by the first sine the daily motion of the sighra of (the planets) beginning with Mars diminished by the daily motion (of the planet) corrected by its manda equation (and) multiplied by (the difference of) the sine(s) which is to be passed over by its sighra equation. (Then) one should divide by the sighra hypotenuse (of the planet) the radius multiplied by the result. The daily motion of the sighra diminished by the result is the true daily motion (of the planet).

¹dya RP₂ ²kakşyā° RP₂ ³pariņāmyate S ⁴between ▷ and <: °maņḍalopari gamyate, °maņḍalopari gamyate, °maņḍalopari corrected to °maṇḍalopari by DY P₁; ⁵ukta IV₁P₂ ⁶phalā° corrected to phala° by DY P₁; phalaguņita- S ^{7°}dha P₁ ^{8°}jaye IV₁RP₁ ⁹chīkarņaņ R; śī° P₁ ¹⁰iti rtha R; ity artha P₂ ¹¹bhato RP₂ ¹²ye tū P₁ ¹³sphuṭa- IV₁ ¹⁴kakṣyā° IV₁RP₂ ¹⁵va P₂ ^{16°}sphuṭātyor P₂; °gatyoḥ P₁ ^{17°}gates I; °gate V₁P₁ ¹⁸saṃsodhya P₁ ¹⁹between ▷ and ⊲: grahasphuṭabhuktir IV₁; grahasya sphuṭabhiktir P₁S ^{20°}dhaṃm IV₁ ²¹ce IV₁P₁; cet RP₂ ²²śī° RP₂; °gate P₁ ²³cakra° P₂ ^{24°}mā IV₁R ²⁵tadā svalpo RP₂ ²⁶kakṣyā° IV₁R ²⁷phalaṃ guņitaṃ P₂ ^{28°}dha S ^{29°}jaye IV₁RP₁; °jayet P₂ ³⁰śī° P₂ ³¹tāva IV₁R ³²athādhikā for apy adhikā P₁ ^{33°}gate IV₁ ³⁴kakṣyāmaṇḍala-pratimaṇḍalāvasthi° (kakṣā° P₁S) IV₁P₁S ^{35°}dhyāsipta° IV₁ ³⁶avilaṃvitaḥ IV₁ ³⁷between ▷ and ⊲: °deśāvalambitaḥ S ³⁸between ▷ and ⊲: °bhuktyantaraguņān IV₁; °bhuktyāṃtarenāta R; °bhuktyāṃaṭaraṣāta P₂; °bhuktyaṇtaraguņā ata S ³⁹llabdhān IV₁; labdhā R ^{40°}gati R; °gatir P₁S ⁴¹cakra° IV₁RP₂ ⁴²for sarvam upapannam: sarvopapannam P₁

If the result is greater than the daily motion of the $\$\bar{s}\bar{s}hra$, when the daily motion of $\$\bar{s}\bar{s}hra$ is subtracted from the result, a retrograde motion (is produced).

Of what sort is the daily motion of the $\hat{sig}hra$ of the star-planets beginning with Mars? (It is) diminished by the daily motion (of the planet) corrected by its manda equation and multiplied by (the difference of) the sine(s) which is to be passed over by its $\hat{sig}hra$ equation. One should divide it when it is (thus). By what? By the first sine.

This is meant. Whatever is the daily motion of the planet beginning with Mars corrected by its manda equation (computed) by the calculation explained before, when it is subtracted from the daily motion of its sīghra, the daily motion of the sīghra diminished by the daily motion (of the planet) corrected by its manda equation is produced. Then one should multiply it by (the difference of) the sine(s) which is to be passed over by its sīghra equation. Whatever is the sīghra equation of the planet which is being corrected, the difference of the sines when the sine of that equation is being computed is the multiplier. That is called, "(the difference of) the sine(s) which is to be passed over by its the daily motion of the sine sines when the sine of the sine (s) which is to be passed over by its equation." Having multiplied by that the daily motion of the singhra diminished by the daily motion (of the planet) corrected by its manda equation, one should divide (the product) by the first sine, that is, by 214.

Then whatever is the result, one should divide by the sighra hypotenuse (of the planet) the radius multiplied by that result. Whatever is the result from that, the daily motion of the sighra is always to be diminished by that. What is diminished is the true daily motion of the planet when it stands at that place.

"If the result is greater than the daily motion of the sīghra" (means) if what is obtained from the radius multiplied by the result and divided by the sīghra hypotenuse is greater than the daily motion of the sīghra, then, when the daily motion is subtracted from what is obtained, the retrograde motion is produced. When the reverse subtraction is made, the remainder is the retrograde motion. The meaning is that it is possible only at that time.

But in the case of Mars, there is this difference. When one has first computed the manda equation as mentioned, its half is subtracted from or added to the mean daily motion. Then one should divide by the first sine the daily motion of the sīghra diminished by that (and) multiplied by the sine of what is to be passed over by the sīghra equation. When one has derived the corrected daily motion by means of what was obtained as mentioned, half of the difference between that and the daily motion corrected by half of the manda equation is added to or subtracted from the daily motion computed by one calculation there; if the corrected daily motion is greater than the daily motion corrected by the manda (equation), it is added; otherwise, it is subtracted. When it is computed in this way, the daily motion of Mars corrected by two calculations is produced. When one has assumed this to be the mean (daily motion, one should compute) the correction of the daily motion (of Mars) like (that of) the other planets. One should demonstrate everything after having set down (in a diagram) the orbit circle etc. properly.

Here is this explanation: At whatever place on the orbit circle is a planet corrected by the manda equation, when the center of the sight a epicycle is computed to be there, the true planet is at the intersection of its (the epicycle's) circumference and the circumference of its sīghra eccentric circle. The distance between that and the line to its sighra apogee increases every day by the difference between the daily motion of its sight and the daily motion of (the planet) corrected by the manda equation. Because the sighra moves to the east by the daily motion of sighra and (the planet) corrected by the manda (equation moves) by the daily motion corrected by the manda equation, therefore the daily motion of the sīghra diminished by the daily motion (of the planet) corrected by the manda (equation) is calculated. Whatever is the difference between these two is the daily motion of the sight anomaly. And that daily motion of the sight anomaly is corrected. There whatever rod passes the center of its sight epicycle, that is imagined to be the base line (avadhi) in the calculation of the arc of the equation. Because however great is the distance from that, so great is the equation of the planet, therefore the sine from that base line is produced in the calculation of the arc of the equation. Whatever that difference of the sines at the end of (the computation of) the sight equation is (that was) mentioned previously, there is the rule of three with that. If that difference of the sines is obtained by means of 225, then what is (obtained) by the minutes of the daily motion of the sight anomaly?

Then the second rule of three. If the minutes of an arc equal to 225 are produced by means of 214, then what is (produced) by means of the difference of the sines obtained (in the first rule of three)? Here, the number 225 is the divisor in the first rule of three and the multiplier in the second. Therefore, after removing these two, the difference of the sines is the multiplier of the daily motion of the sight anomaly and the first sine is its divisor. The result is the true daily motion of the sight anomaly at the place of the planet as it stands on the (sight place).

It is to be converted into (that) on the orbit circle. For that purpose this rule of three was mentioned: "one should divide by the sīghra hypotenuse (of the planet) the radius multiplied by the result." Whatever is obtained from that, that is the true daily motion of the sīghra anomaly on the orbit circle. That is the difference between the true daily motion of the planet and that of the sīghra. Then, when one has subtracted (it) from the daily motion of the sīghra, the true daily motion of the planet is produced.

If the result is greater than the daily motion of the sīghra, then, after one has subtracted making subtraction in reverse, a retrograde motion is produced

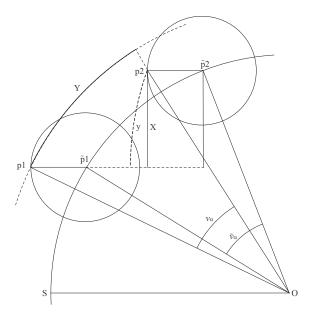


Figure 3:

because the śīghra hypotenuse is short at that time since the orbit circle stands above (the planet). "One should divide by the śīghra hypotenuse (of the planet) the radius multiplied by the result" is (the rule) as long as the true daily motion of the śīghra anomaly is greater than the daily motion of the śīghra since the observational difference (*drgbheda*) is greater. Because of the fact that its mean motion belongs to its orbit circle, the planet is understood to slip westwards from the position which it occupied on the previous day by the difference between the daily motion of the śīghra and the true daily motion of the śīghra anomaly. Therefore it is said that "when the daily motion of śīghra is subtracted from the result, a retrograde motion (is produced)."

Everything has been explained.

III.3 Mathematical Commentary

This rule is utilized in BSS for applying sīghra equation to the manda-corrected motion²⁾. The mathematical expression of this rule is³⁾:

$$v = v_S - (v_S - \tilde{v}) \cdot \frac{\Delta J_\alpha}{J[1]} \cdot \frac{R}{H},$$

where

v: the true daily motion of the planet

 v_S : the daily motion of the sīghra apogee

 \tilde{v} : the manda-corrected daily motion of the planet

R: the radius of the standard circle $(O\tilde{p}_1 \text{ in figure } 3)$

H: the true geocentric distance of the planet (Op_1) .

Pṛthūdaka explains this rule by means of three proportions. (figure 3). In this figure \tilde{p}_1 and \tilde{p}_2 stand for manda-corrected planets in two successive days and p_1 and p_2 for the true planets. Śīghra apogee (S) which moves faster than the planet is fixed here, so that the planet looks as if it moves backward by the daily motion of śīghra anomaly (v_{α} and \tilde{v}_{α}).

The first proportion is the common proportion to get Rsine-differences:

$$I: \Delta J_{\alpha} = \tilde{v}_{\alpha}: X.$$

By this proportion, X, i.e., Rsine-difference corresponding to the manda-corrected daily motion of anomaly \tilde{v}_{α} is obtained.

Then Prthūdaka applys the second proportion to X:

$$J[1]: I = X: y,$$

where y is the arc expressed in a dashed bold line starting from $\tilde{p}2$. Prthūdaka says that this y is "the true daily motion of the sīghra anomaly at the place of the planet as it stands on the (sīghra) eccentric circle." Gathering from this comment and the third proportion, Prthūdaka seems to assume y to be the arc Y, which is expressed in a bold line beginning from p1. Actually this is a good approximation when the sīghra anomaly is close to 0° (360°) or 180°.

Then he reduces Y to the arc on the orbit cirle, i.e., the true daily motion of the anomaly v_{α} , by means of the third proportion:

$$H: R = Y: v_{\alpha}.$$

When these three proportions are combined, we get a rule for calculating v_{α} :

$$v_{\alpha} = \tilde{v}_{\alpha} \frac{\Delta J_{\alpha}}{J[1]} \cdot \frac{R}{H}.$$

Then, since

$$v = v_S - v_\alpha, \quad \tilde{v}_\alpha = v_S - \tilde{v},$$

we finally get Brahmagupta's formula:

$$v = v_S - (v_S - \tilde{v}) \cdot \frac{\Delta J_\alpha}{J[1]} \cdot \frac{R}{H}$$

Acknowledgement

I sincerely thank professor David Pingree for giving me his precious time on checking this edition and translation.

Notes

¹⁾Similar rules appear in: PS IX 12–14ab; MBh IV 14–17, IV 58–59; LBh II 9–13; KhKh I 19–20; SDV II 15, III 11–13; SS II 47–49; VS II i 97–98, II i 100; and SSE III 40–41. These all are discussed in Ikeyama forthcoming. This rule is criticized in LBh II 14–15 and SDV III 16.

²⁾The followers of this rule are not many. We can see similar rules only in SDV III 18cd–19; VS II iii 18; and SSE III 42–43. Bhāskara criticized this rule in SSI I 2, 40 and gives an improvement in SSI I 2, 39. See Ikeyama forthcoming for more information.

³⁾According to Dvivedin's edition (and Sharma's 1966 edition), this rule can be expressed:

$$v = v_S - \pm \overline{ghra}$$
 equation $\cdot \frac{\Delta J_{\alpha}}{J[1]} \cdot \frac{R}{H}$

which is difficult to rationalize.

Bibliography

Dvivedin 1902: Brāhmasphuṭasiddhānta and Dhyānagrahopadeṣādhyāya by Brahmagupta,

edited with his own commentary by Sudhākara Dvivedin, The Pandit vol. XXIV, Benares 1902

- Gangooly 1935: The Sūrya Siddhānta, A Text-Book of Hindu Astronomy, translated with notes and appendix by Ebenezer Burgess (originally appeared in JAOS 6, 2 (1860) pp. 141–498), edited by Phanindralal Gangooly with an introduction by Prabodhchandra Sengupta, Calcutta 1935 (reprinted in Delhi, 1989)
- Ikeyama forthcoming: "A Survey of Rules for Computing the True Daily Motion of the Planets in India," *Ketuprakasa*, Studies in the History of Exact Sciences in honor of David Pingree, Leiden.
- Sharma 1966: Brāhma-sphuṭa Siddhānta with Vāsanā, Vijñāna and Hindi Commentaries, edited by Ram Swarup Sharma, vols. II–IV, New Delhi 1966

Sharma 1968: Brāhma-sphuṭa Siddhānta, Text with Various Readings, edited by Ram Swarup Sharma, New Delhi 1968

(Received: January 27, 2003)