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The Sector Theorem is now generally known as the Menelaus Theorem. At first
glance, it appears to be one of the few pieces of mathematics that we find both in
Ptolemy and his sources. Unfortunately, the textual transmission of the theorem
turns out to be quite involved and it has now become clear that we do not possess
any version of it that can simply be taken as that which Menelaus wrote. Neverthe-
less, it is possible, by examining the textual dependencies of the theorem as it was
transmitted by the Arabic mathematicians, to discern basic types of the theorem
and to decide which one of these should be attributed to Menelaus.

This exercise allows us to discuss the relationship between Menelaus’ and
Ptolemy’s treatment of the theorem, and to situate their differing approaches to
this particular proposition within the broader context of their mathematical and
scientific aims. The tendency of Greek mathematical authors to differentiate their
texts by subject areas allows us to see that the theorem was intended for quite
different purposes by Menelaus and Ptolemy.

The opinion put forward by Neugebauer [1975, 301] favors Menelaus as the author
of the eponymous theorem.1 Although some historians are not convinced by this
position, no one since has cogently argued against it. An examination of Menelaus’
version of the sector theorem and its function in his Spherics, however, shows that
it is unlikely that he intended the sector theorem to be read as his original contri-

1Before Neugebauer published A History of Ancient Mathematical Astronomy, it was common to

hear doubts expressed as to Menelaus’ authorship of the theorem. For example, Bulmer-Thomas

[1974, 299] argues that it was known before Menelaus in the Dictionary of Scientific Biography.

After 1975, however, it became more common for scholars to simply accept that Menelaus had

written the theorem. Toomer [1984, 69, n. 84], for example, states this as a fact in his translation

of the Almagest. Another example of the weight of Neugebauer’s authority is shown in two studies

carried out by Nadal and Brunet. Starting from the hypothesis that Hipparchus used a star globe to

solve the problems encountered in writing his Commentary on the Phenomena of Aratus, they use

statistical analysis to describe certain physical characteristics of the hypothetical globe [Nadal and

Brunet 1984, 1989]. They do not, however, take into consideration the fact that there are numerous

possibilities for Hipparchus’ actual practice: various methods of calculation, multiple star globes,

other modes of analog calculation and so forth.
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bution. An examination of the astronomical evidence in the writings of Hipparchus
and others gives support to the conclusion that the sector theorem was known to,
and used by, Hipparchus.2 Ptolemy’s presentation of his spherical astronomy, for
which the sector theorem is fundamental, gives evidence for an older tradition that
relied exclusively on the sector theorem to solve just those problems that we know
Hipparchus also solved using precise methods of computation.

We will see that the most likely story is that Menelaus found the sector theorem as
a well known tool of predictive spherical astronomy and applied it to his own needs in
the production of a new theory of advanced spherical trigonometry. These findings
support other, independent reasons for believing that the trigonometric methods
based on the sector theorem were available to Hipparchus [Sidoli 2004]. Once we
understand Hipparchus’ role in the history of the sector theorem, it becomes easier
to understand Ptolemy’s approach to spherical astronomy in books I, II and VIII of
his Almagest [Toomer 1984, 64–130, 410–417].

I The sector theorem

The sector theorem was the fundamental theorem of ancient spherical trigonometry.
It asserts a compound proportion that holds for combinations of the chords of six
arcs of great circles forming a concave quadrilateral on the surface of a sphere.
The most important form of the theorem was known to the ancient and medieval
mathematical astronomers as Disjunction.3 It is always the first, and often the only,
form of the theorem that is fully demonstrated on the basis of the underlying chords.

Consider Figure 1. Where the arcs of the figure are less than semicircles and
Crd(α) is the chord subtending arc α, Disjunction asserts that
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By disjunction, we mean that the two components of one of the outer arcs of the

sector figure,
_

GE and
_

EA, are taken separately; that is disjointly. In Disjunction, a

2Björnbo [1902, 72 ff.] in his seminal study of Menelaus’ Spherics, had already come to this opinion,

in which he was followed by Heath [1921, vol. 2, 270]. Rome [1933, 42] agreed that this was a real

possibility. Schmidt [1943, 66–68] also had no problem considering the sector theorem as one of the

first tools of quantitative spherical astronomy.

3 Neugebauer [1975, 28] called this combination of the arcs Menelaus Theorem II (M.T.II). My

terminology follows Lorch [2001, 2–4]. Sector theorem itself is a common Arabic name for the

theorem (¨A¢�®Ë@ É¾ ��Ë@). Conjunctus and disjunctus are the Latin technical terms for ratio types

that Greek authors generally denoted with the terms sÔnjesic and diaÐresic. This way of naming

the two canonical forms of the theorem is found already in Theon’s commentaries to the Almagest

[Rome 1931–1943, 558, 562].
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Figure 1: The Sector Theorem

ratio of the two parts of one of the outer arcs is compared to a ratio of the same two
parts of the facing inner arc and corrected by a ratio of components of the other outer
arc. Hence, it involves two outer arcs and one inner arc; mathematical astronomers
would use Disjunction where they were given more outer arcs than inner arcs.

A second combination of the arcs, called Conjunction, was asserted by Ptolemy
and became canonical in the traditions that came under the influence of the Al-
magest.4 Where the arcs of the figure are less than semicircles, Conjunction asserts
that
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By conjunction, we mean that the first term of the proportion takes the two com-

ponents of one of the outer arcs together; that is conjointly, as
_

GA. In Conjunction,
the ratio of the whole of an outer arc to one of its parts is compared to a ratio of
the same parts of the facing inner arc and corrected by a ratio of components of the
other inner arc. Hence, it involves two inner arcs and an outer arc; mathematical
astronomers would use Conjunction where they were given a preponderance of inner
arcs.

For either combination, it is immaterial which outer arc we begin with, so long
as the relative position of the arcs is maintained. We will refer to these two basic
divisions of the theorem as combinations.

Each of the two combinations occurs in a number of different geometric cases.
For Disjunction, there are three cases. Considering Figure 1, chord AD either meets
a certain radius of the sphere (1) in the direction of B, (2) in the direction of G,

4Neugebauer [1975, 28] calls this combination of the arcs Menelaus Theorem I (M.T.I).
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or (3) the two lines are parallel. For Conjunction, an unnamed colleague of Thābit
Ibn Qurra showed that there are sixteen valid cases [Lorch 2001, 47–49, 165]. For
our purposes, the only relevant cases are the three belonging to Disjunction. This
was largely so during the ancient and medieval periods as well, since, from the time
of Theon, Conjunction was not demonstrated case by case, but on the basis of the
proof of Disjunction. We will refer to the divisions of the theorem based on the
underlying geometry of the sphere as cases.

The operations of ancient ratio theory allow the mathematician to reorder the
terms of one of the two basic combinations to form other compound ratios obtaining
between almost all other pairs in the original proportion. Thābit demonstrated that,
given any compound proportion in six terms, there are eighteen such permutations,
from which another eighteen can be trivially obtained by inversion [Lorch 2001,
74–95]. Furthermore, he proved that these eighteen permutations exhaust the valid
possibilities [Lorch 2001, 96–111]. We will call such modifications to a basic form
permutations.

These terminological niceties, although based on real mathematical distinctions,
are not exhibited or maintained in the linguistic practices of the ancient and medieval
authors. Their vocabulary for handling the mathematical classifications of the sector
theorem are neither systematic nor consistent.

We will use the term version to designate a particular textual tradition of the
sector theorem. There is some unfortunate, but unavoidable, ambiguity here because
a version may be something as precise as a particular edition or as broad as a textual
tradition of which there are various different exemplars.

II A preliminary history

Because of its role in spherical astronomy, and the intense interest in this field on the
part of the Arabic mathematical astronomers, the transmission history of the sector
theorem is quite involved. Fortunately, it is not necessary to give an exhaustive
account of the issues here. An overview of the known stages of the early medieval
transmission, and an examination of the most important texts, will allow us to form
an idea of the different versions of the theorem. From this we may determine which
versions of the theorem are closest to that found in Menelaus’ Spherics. The material
in this section is largely based on the research of Krause [1936] and Lorch [2001].5

In surveying all the material related to the sector theorem in the ancient and
medieval periods we find three basic traditions: (1) astronomical, (2) geometrical,
and (3) didactic. The astronomical tradition is exemplified in Ptolemy’s Almagest
but probably had its origins earlier, in the Hellenistic period. The didactic tradition

5Other useful overviews of the transmission are given by Hogendijk [1996, 18–21] and Taha and

Pinel [1997, 151–155].



SCIAMVS 7 The Sector Theorem 47

is first represented by the Commentary of Theon of Alexandria and came to its apex
in the work of Thābit. The geometric tradition was begun by Menelaus’ Spherics
and brought to fruition by the Arabic mathematicians. The principal difficulty in
studying this material is that practitioners worked in more than one tradition, so
that the three did not remain distinct.

The Greek text of Menelaus’ Spherics, composed around 100 ce, has been lost,
with the exception of a few fragments of the first book preserved by Theon in his
commentary to the Almagest [Björnbo 1902, 22–25]. Nevertheless, the text is found
in a number of Arabic versions and Latin and Hebrew translations made from one
of these, where the sector theorem generally appears as Spher. III 1.6 It is used as a
fundamental theorem for the development of a new theory of spherical trigonometry
based on the properties of the spherical triangle. The sector theorem itself, however,
is conspicuous in being the only theorem in the text that neither concerns nor relies
on spherical triangles [Björnbo 1902; Nadal, Taha and Pinel 2004].

The earliest Greek version of the sector theorem that we possess is that of Al-
magest I 13, written in middle of the 2nd century [Toomer 1984, 64–69]. Ptolemy’s
treatment of the theorem is straightforward and concise. The theorem itself is pre-
ceded by a series of lemmas, of which there are three types: (1) the plane sector
theorems, (2) application lemmas, and (3) computation lemmas. The plane sector
theorems demonstrate Conjunction and Disjunction for the plane configuration of
the subtended chords, which also form a concave quadrilateral (Alm. I 13.1 & 13.2).
These are followed by two lemmas showing that ratios which hold for certain line
segments in a circle can be applied to the chords of double arcs that are related
to those lines (Alm. I 13.3 & 13.4). There are also two brief corollaries to these,
which would be useful in applying the sector theorem to calculations (Alm. I 13.3c
& 13.4c).7 Ptolemy demonstrates the spherical configuration of Disjunction for the
first geometric case and simply asserts that Conjunction can be shown on the basis
of the plane sector theorem (Alm. I 13.5 & 13.6).

In the late 4th century, Theon, by way of commentary to Ptolemy’s work, gives a
treatment of the sector theorem that is more detailed than Ptolemy’s. His treatment
is sufficient for a reader of the Almagest but is not mathematically complete. He
gives full enunciations for all the theorems; the effect of this is that, in the case
of the sector theorem itself, he becomes so verbose as to be almost unintelligible
[Rome 1931–1943, 558, 562–563]. He proves the plane cases for a number of dif-
ferent permutations of the chords in the sector figure, on the grounds that some of
these are actually employed by Ptolemy; however, he does not exhaust the possi-
ble permutations [Rome 1931–1943, 539–545]. Theon also proves the second of the

6In one important text tradition the sector theorem is Spher. II 8. For convenience I will, never-

theless, use Spher. III 1 to denote an occurrence of the sector theorem found in the Spherics.

7These computation lemmas are further discussed below; see page 60
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three geometric cases of Disjunction; however, he seems to believe that the theorem
does not hold in the third, parallel case [Rome 1931–1943, 560-562 & 552-554].8 He
gives two proofs of Conjunction, again in two cases; the first filling out Ptolemy’s
sketch, the second based on Disjunction and a simple lemma about the chords of
supplementary arcs [Rome 1931–1943, 562–570].

Although both Ptolemy and Theon discuss Menelaus in other contexts, neither
of them makes any mention of him in regard to the sector theorem. Indeed, Theon’s
comments to Alm. I 13 are disappointing from a historiographic perspective. There
is no indication that Theon consulted any works other than the Almagest when he
wrote this material.

Three Arabic translations of Menelaus’ Spherics are attested, although they have
all been lost. The first, Ü1, was apparently made in the 8th century by an unknown
scholar and is generally believed to have come through a Syriac intermediary [Krause
1936, 85].9 A marginal note in al-T. ūs̄ı’s edition mentions another early translation,
Di, by Abū ↪Uthman al-Dimashq̄ı [Taha and Pinel 1997, 153, n. 10]. In the 9th

century, a third, more literal translation, bH. , was made by Ish. āq ibn H. unayn, the
son of the great medical author and translator.

In Baghdad under the ↪Abbāsid Califate, mathematical, and hence spherical, as-
tronomy became subjects of great interest and activity. In the late 9th century,
Thābit composed On the Sector Theorem, Th*, an important original treatise that
would come to play a vital role in the transmission of the theorem in the Arabic
tradition [Björnbo 1924; Lorch 2001; Bellosta 2004]. In his introductory remarks, he
states that the sector theorem was studied more thoroughly than the other geomet-
ric theorems used in astronomy [Lorch 2001, 43]. Moreover, his remarks on other,
contemporary interest in the theorem make it clear that it was the focus of consid-
erably attention in his lifetime. On the Sector Theorem provides a mathematical
completion to Ptolemy’s approach to the theorem. Thābit assumes as demonstrated
the material already found in the Almagest. He then shows the other two geometric
cases of Disjunction, determined by the relationship of a chord of the sector figure
and a certain radius of the sphere. Conjunction is demonstrated on the basis of
Disjunction, in the same way as Theon. Thābit shows that there are sixteen pos-
sible combinations of the arcs and gives proofs for all of these. Although it is not
certain that Thābit made direct use of Theon’s Commentary, it seems likely that
the elements of his text that are also found in Theon came to him, by one route or

8Although Theon does not say so explicitly, his discussion of the application lemma Alm. I 13.3

indicates that he held that the sector theorem could not be applied to the parallel case [Rome 1933,

45–49]. He points out that the relevant application lemma fails in the parallel case. In fact, the

theorem does hold in this case; however, the proof must avoid the lemma that Theon warns against.

9 Sezgin [1996, 159] is not convinced of this view, but Hogendijk [1996, 26] offers an argument for

a Syriac provenance based on the transliteration of diagram letters.
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another, from the Arabic translations of the Commentary [Lorch 2001, 343–347].10

Around this time, al-Māhān̄ı compiled Ma, an incomplete revision of the oldest
Arabic translation of the Spherics, Ü1. This version was previously thought to be
lost, but Lorch [2001, 333–334] has recently shown that, K, an extant manuscript,
bears a direct relationship to Ma, or to Māhān̄ı’s source.

About a century later, al-Haraw̄ı made H, a revision of Ma. According to Haraw̄ı,
Ma ended in confusion at Spher. III 5.11 He set about to rectify this situation,
providing a full and sound text of the Spherics.12 When it came to the treatment of
the sector theorem, Haraw̄ı interjected a number of interesting historical comments
that underscore the differences between Menelaus’ approach and that of Ptolemy
[Lorch 2001, 330–331]. The theorem itself, however, is virtually identical in H and
K. Hence, we may presume that this version of the theorem was essentially that
found in Māhān̄ı’s edition, Ma. For the sector theorem, we assume H = K = Ma.
We will call this version Ma-H. An edition of the sector theorem, as preserved in
H has recently been made by [Lorch 2001, 340-342]. We will take Ma-H Spher. III
1 as a first witness of the version of the theorem that Menelaus wrote.13

The only critical edition of the Spherics was made by Krause on the basis of
N, Abū Nas.r’s version of the text [Krause 1936]. Abū Nas.r largely followed Ibn
H. unayn, bH. , inserting his own astronomical comments following theorems that
have a definite, or important, astronomical interpretation. In the matter of the
sector theorem, however, Abū Nas.r appears to have turned away from bH. and
consulted an Arabic tradition of the theorem as found in the work of Ibn S̄ınā and
presumably originating with Thābit’s treatise [Lorch 2001, 329–330, 353–355]. Ibn
S̄ınā, the great philosopher and mystic, included a lengthy version of the sector
theorem in the astronomical section of his Remedy, bS*, a voluminous compendium
of all knowledge [Madwar et Ahmad 1980, vol. 4, 48–76; Weidmann 1926–1927].
N is similar to bS* in a number of ways, including a very trivial lemma that first
makes its appearance in the sector theorem material in bS*.14 Hence, the sector
theorem in N is quite different from what we find in Ma-H. In the whole of Spher.

10Especially, compare Rome [1931–1943, 567–570] with Lorch [2001, 56–63].

11In fact, Haraw̄ı says that the text broke off after Spher. II 10 [Krause 1936, 26]. The numbering

of the different versions, however, is such that II 10 in Haraw̄ı is III 5 in almost all other editions

[Krause 1936, 8–9].

12According to Taha and Pinel [1997, 153, n. 10] a marginal note in al-T. ūs̄ı’s edition claims that

Haraw̄ı also made use of bY, an improved edition of Di, made by Ibn Yusif.

13The proposition numbering of the Māhān̄ı-Haraw̄ı tradition gives the sector theorem as II 10.

Here, as elsewhere, I follow the proposition numbering of Björnbo [1902]. Krause [1936, 6–9] gives

a correspondence of the different numbering schemes.

14This is a proof of the fact that if A : B = C : D and E : F = 1, then A : B = (C : D) × (E : F )

[Madwar et Ahmad 1980, 68].
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III, Abū Nas.r, following Ibn S̄ınā, uses Sines to bring the mathematical expression
more into agreement with contemporary practices in spherical trigonometry, a field
to which he was himself an important contributor.15

In the 12th century, Gerard of Cremona produced a Latin translation, G, from
an Arabic text labeled D by Krause, which, although lost, is also attested through
other sources. D appears to have been a compilation in two parts; Da on the basis
of Ma, and Db on the basis of bH. . Until recently, it was held that D Spher. III 1
belonged to Da (= Ma-H, for the sector theorem), but Lorch [2001, 332–334] has
shown that the theorem is different in the two versions and dispelled any reasons
for believing that it does not belong to Db. Because of the literalism of Gerard’s
translations, we may take his version of the theorem as close to that of Ibn H. unayn
[Kunitzsch 1992; Weber 2002]. On the other hand, in comparing G Spher. III 1
and Ma-H Spher. III 1 with the other versions of the theorem, we see structural
similarities that differentiate these two from the rest. We will take G Spher. III 1
as a second witness to the theorem that Menelaus wrote.

In the 13th century, Nas.̄ır al-Dı̄n al-T. ūs̄ı, produced T. , an edition of the Spherics
with commentaries, as part of a larger project to provide a new recension of the
canonical works of Greek astronomy. Al-T. ūs̄ı made his text on the basis of H
and N and was strongly influenced by Abū Nas.r’s approach, although he largely
preserved the text of H. In his proof of Spher. III 1, al-T. ūs̄ı returned to the ancient
practice of using the chords of double arcs. Al-T. ūs̄ı’s text has been printed, rather
carelessly, in the Hyderabad editions of Arabic texts [al-T. ūs̄ı 1940].

In this same century, Jacob ben Māh. ir made J, a Hebrew translation, again on
the basis of D. This has never been edited, but it served as the basis for a Latin
translation of the Spherics by Edmund Halley [1758].

Although there are a number of other versions of the Spherics, they all depend
on these, in one way or another. The early transmission of the work is summarized
in Figure 2.16 This schema is suitable for most of the text, however, in the case
of the sector theorem, the didactic tradition founded by Thābit entered into the
transmission of the Spherics itself. In particular, Abū Nas.r consulted Ibn S̄ınā, and
al-T. ūs̄ı made use of Abū Nas.r’s work. This effect is so pronounced that it is advisable
to draw up a separate schema for the sector theorem itself. The transmission of
Spher. III 1 is summarized in Figure 3.

15He expresses the relevant ratios in terms of the Sine of the arc (�ñ�̄ I. J
k. ), where Thābit uses the

chord of the double arc (�ñ�̄ 	ª 	� Q�Kð) and Ibn H. unayn the correspondent to the arc (�ñ�̄ Q�
 	¢ 	�).
The latter two are different expressions for the same line, Crd(2α), while the first, Sin(α), is

the expression for half of this line, which can be used to express the same proportions because

Crd(2α) = 2Sin(α).

16A more complete schema for the transmission of the Spherics is given by [Taha and Pinel 1997,

198].
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This figure shows how the astronomical and didactic traditions affected the trans-
mission of Spher. III 1. We see that the astronomical tradition, as exemplified by
Ptolemy, came to exert a strong influence on the sector theorem as it was handled
by the Arabic mathematical astronomers. This resulted in both the astronomical
and didactic traditions entering into the geometric tradition of the Spherics. For
example, the texts of the Spherics produced by Abū Nas.r and al-T. ūs̄ı, which were
the only Arabic versions published until quite recently, included a Spher. III 1 that
was taken over from the didactic tradition, through bS* and Th*. This means that
most studies of the sector theorem have been misled by the assumption that the
versions of Abū Nas.r and al-T. ūs̄ı can be essentially attributed to Menelaus.

K~ Ma          (Ü1) 

Ü1 bH

N(bH)

G J

.

H(Ma,bY)

T(H,N)

Greek Text(s)

Syriac

Da,b
.

.

Di
bY(Di)

Figure 2: Stema for the early history of Menelaus’ Spher-
ics. Texts in boxes are still extant. Parentheses
indicate that a version is an edition based on the
enclosed text(s). A few possible, but for our pur-
poses irrelevant, early versions are omitted. The
majority of the late editions are ignored [Taha and
Pinel 1997, 198].

The schema in Figure 3, however, shows that Ma-H and G are the versions of
the theorem least removed from Menelaus. Hence as stated above, we may take
Ma-H Spher. III 1 and G Spher. III 1 as the two most important witnesses to the
version of the sector theorem that Menelaus included in his Spherics.

When we collate the sector theorem in Ma-H with that in G, the Latin trans-
lation descending from bH. , it is clear that these two Arabic translations were, in
fact, somewhat different. Indeed, we should admit the possibility that they were
made from different Greek recensions. When we make this comparison, however, we
also notice that they share a number of characteristics that differentiate them from
all other versions of the theorem.17 In fact, the similarities are greater than the
differences. Moreover, it is clear that the proof given in Ma-H is simply a sketch
of some more complete version. In this regard, G will help us see some of what has

17Some of these characteristics are already mentioned by al-Haraw̄ı who was struck by the difference

between Menelaus’ and Ptolemy’s versions of the theorem [Lorch 2001, 330-331].
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been left out. Ultimately, however, we should take the two versions of the theorem
in Ma-H and G as independent witnesses of the theorem Menelaus wrote.

M Spher.(s)

Ü1

N(bS)

G

J

bH
.

H(Ma,bY,P)

T(H,N)

P Alm.
The (P) In Alm.

bS*(Th)

Th*(P,The?)

Syriac

Db

.

K~ Ma          (Ü1) 

bY(Di)

Di

Figure 3: Schema for the early history of Spher. III 1. Texts
in boxes are still extant. Parentheses indicate that
a version makes use of the enclosed text(s). As-
terisks indicate original treatises, not translations
or editions of the Spherics.

III Two versions of Spher. III 1

The version of the theorem found in the Māhān̄ı-Haraw̄ı tradition is simply an asser-
tion of the proposition followed by a proof sketch. There is almost no argumentation.
In only one or two places is an argument even suggested. In most places, however,
the arguments missing in Ma-H can be supplied by a reading of G. Hence, we will
not address the details of the mathematics until we have considered both versions.

Only Disjunction is mentioned, or demonstrated. The geometrical cases are
differentiated on the basis of the relationship between a chord of one of the arcs of
the sector figure and a certain radius of the sphere. This feature distinguishes the
Ma-H version of the theorem from that in Gerard. Disjunction is only treated in
two cases, although the possibility of the third case is mentioned. The argument
given for the parallel case is mere handwaving.

No lemmas are given, but because of the structure of the argument they
are hardly needed. This becomes clear when we read Gerard’s translation.
Where we might expect the use of a lemma, we find instead an explicit reference
to the diagram. This appeal to the figure also shows up a number of times in Gerard.



SCIAMVS 7 The Sector Theorem 53

I) Ma-H Spher. III 1 (The Māhān̄ı-Haraw̄ı edition):18

A

Z

B

HG
T

D
E

L

K

Figure 4: Diagram for the first case of the sector theorem in
the Māhān̄ı-Haraw̄ı tradition of the Arabic text.

[1] Then, if arc BED intersects arc GEZ between the two arcs BZA, GDA, and each

of the four arcs is less than a semicircle, I say that the ratio of the chord of twice AZ to

the chord of twice BZ is compounded of the ratio of the chord of twice AG to the chord

of twice GD and the ratio of the chord of twice DE to the chord of twice EB.

[2] The proof of it is that we make point H the center of the sphere and we join

HZ, HE, HG and we join BD, BA, AD. [3] And let AD, HG meet in one of two

directions ( 	á�
�Jêm.Ì'@ øYg@ ú

	̄
) at T . [4] BD will intersect HE at L; AB will intersect ZH

at K. [5] Then points K, L, T are in the planes of both circle ZEG and triangle ABD;

hence, line KLT is straight. [6] Then, according to what is in the diagram, the ratio

AK to KB is compounded of the ratio AT to TD and the ratio DL to LB; and these

are the ratios of the chords of twice the arcs attached to them. [6] Hence, the ratio of

the chord of twice AZ to the chord of twice BZ is compounded of the ratio of the chord

of twice AG to the chord of twice GD and the ratio of the chord of twice ED to the

chord of twice EB.

[7] And if AD is parallel to HG, then the chord of twice AG will equal the chord

of twice GD, because the sum of AG, GD is a semicircle. [8] Hence, the ratio AK to

KB is the ratio DL to LB. [9] Hence, the ratio of the chord of twice AZ to the chord of

twice ZB is the same as the ratio of the chord of twice ED to chord of twice EB. [10]

And that is what we wanted to show.

The cases of the theorem are differentiated on the basis of the relationship between
the chord AD and radius HG. These lines either meet “in one of two directions”
or they are parallel (Ma-H[3] & Ma-H[7]). In this one respect, this tradition is
similar to all other occurrences of the sector theorem. In G, on the contrary, the
cases are distinguished one the basis of the relationship between chord AD and line

18See page 71 for the text.
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AD
E

L

G H

ZK

T

B

Figure 5: Diagram for the parallel case. The layout of the
parallel lines has been modified from the medieval
figures; cf. page 72.

KL.19 As J shows, this was found in Db, and hence goes back to Ibn H. unayn’s
translation.

In almost all other respects, Ma-H Spher. III 1 is simply an abbreviated version
of G Spher. III 1. The one exception to this is the explicit reference to “one of the
two directions,” where the presentation in Ma-H is more complete than that in G.

On the basis of differences such as these, Lorch [2001, 327–335] considered the
version in the Māhān̄ı-Haraw̄ı tradition to be more pristine. These considerations
will be taken up after we have read Gerard’s translation.

The abbreviation encountered in this version of the theorem is so pronounced
that Haraw̄ı felt the need to give his readers some warning prior to setting out the
theorem itself [Lorch 2001, 331]. He remarks on the use of ellipsis in the expression
for the chords of the double arcs and claims that statements about the drawing,
such as that in Ma-H[6], should be read as referring to lemmas for the plane sector
figure. Haraw̄ı himself included these lemmas, however, he made it clear that they
were not originally in the text.

Since there is so little argumentation in Ma-H, if we wish to see how the math-
ematician would have proceeded, we must be familiar with a more complete version
of the proposition, such as that in Gerard. Despite the differences between Ma-H
and G, these two versions have a great deal in common. Since G is more complete,
a reading of this text will reveal the arguments missing in Ma-H. A mathematical
summary of the text is provided in Appendix B. The summary can also be used
to flesh out the argument for the sector theorem in Ma-H, making the necessary
changes for the differences in construction. Moreover, it includes mathematical in-
terpretations of the difficult passages toward the end.

It should be noted that Gerard uses the strange expression nadir of an arc to

19See G[8] & G[19] below, where AD is called NM and KL called SD.
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mean the chord of a double arc; that is na(α) = Crd(2α). This convention is
explained in G[4], below.

II) G Spher. III 1 (The Gerard translation):20

[1] Let there be two arcs of two great circles on the surface (superficie) of a sphere, upon

which are NE, LN . [2] And, between them, I produce the two arcs ETA, LTM and

they intersect each other at T . [3] Therefore, I say that the ratio (proportio) of the nadir

of arc AN to the nadir of arc AL is compounded of the ratio NE to EM and the ratio

of the nadir of arc MT to the nadir of arc TL.21 [4] And indeed, when I say the nadir

of an arc, I mean nothing more than the line, which is subtended by the double of that

arc; according to which, let that arc be less than a semicircle.

N
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D

T

S

L

A

Figure 6: Diagram for the first case of the sector theorem in
Gerard’s Latin translation.

[5] The demonstration of which is this. [6] I will make point B the center of the

sphere. [7] And I will produce lines NL, NM , LM , TB, EB, ASB, SD. [8] And initially

(in primis), the two lines NM , SD, when extended, will meet at point C, according to

what is in the diagram. [9] And I produce line EC. [10] Therefore point C will be in

each of the two planes (superficierum) of the two arcs ATE, NME, while each of the

two points E, B will also be in those two planes. [11] Therefore, CEB is a straight line.

[12] And because this diagram is so, the ratio NS to SL is as the ratio compounded of

the ratio NC to CM and the ratio MD to DL. [13] In fact, the ratio NC to CM is as

the ratio of the perpendicular falling from point N to CEB to the perpendicular falling

from point M to line CEB. [14] And likewise, the perpendicular falling from point N

to line CEB is half the chord of twice arc NE. [15] And the perpendicular falling from

point M to that line is half the chord of twice arc EM . [16] Therefore, the ratio NC to

CM is as the ratio of the nadir of arc NE to the nadir of arc ME. [17] Furthermore,

20See page 72 for the text.

21The text should read na(AN)
na(AL)

= na(NE)
na(EM)

× na(MT )
na(TL)

; see G[18], below.
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in the same way, it is shown that ratio NS to SL is as the ratio of the nadir of arc NA

to the nadir of arc AL and that the ratio MD to DL is as the ratio of the nadir of arc

MT to the nadir of arc TL.22 [18] Therefore, the ratio of the nadir of arc NA to the

nadir of arc AL is as the ratio compounded of the ratio of the nadir of arc EN to the

nadir of arc ME and of the ratio of the nadir of arc MT to the nadir of arc TL.

M N
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T D

L
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S

B

Figure 7: Diagram for the parallel case. The layout of the
parallel lines has been modified from the medieval
figure; cf. page 74.

[19] And likewise, we make line SD equidistant from line NM and we will complete

the two halves of the two circles ETC and ENC, according to what is in the second

diagram. [20] And since, in the two planes ENC, ETC, there are two equidistant lines,

which are SD, MN , the common section of those two planes, which is line EC, will be

equidistant from the two lines SD, MN . [21] And since the perpendicular falling from

point N to line CBE is half the chord of twice arc EN and is likewise half the chord of

twice arc EM , the nadir of arc EN will equal the nadir of arc EM . [22] And since line

MN is equidistant from line DS, ratio NS to SL, which is as the ratio of the nadir of

arc NA to the nadir of arc AL, will be as the ratio MD to DL, which is as the ratio of

the nadir of arc MT to the nadir of arc TL. [23] Therefore, the ratio of the nadir of

arc NA to the nadir of arc AL is as the ratio compounded of the ratio of the nadir of

arc MT to the nadir of arc TL and the ratio of the nadir of arc NE to the nadir of arc

EM , since it is equal to it.

[24] And by way of this approach, likewise is shown the rest of the things that result

from this case of the proportion (proportionis) in respect to the nadirs of these arcs.

[25] And we know that from the arrangement of the lines which intersect each other in

the plane that we discussed.

[26] And the remaining cases (species) of this configuration are shown just as we

22For the details of the compact logic of this step, see Appendix B.
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show in this diagram. [27] Since the ratio of the nadir of arc AL, also, to the nadir of

arc AN is as the ratio compounded of the ratio of the nadir of arc LT to the nadir of

arc TM and the ratio of the nadir of arc ME to the nadir of arc EN . [28] And that is

because we just now showed that the ratio of the nadir of arc NA to the nadir of arc

AL is as the ratio compounded of the ratio of the nadir of arc MT to the nadir of arc

TL and the ratio of the nadir of arc NE to the nadir of arc ME. [29] Therefore, by

inverse ratio (convertendo proportione), the ratio of the nadir of arc AL to the nadir of

arc AN will be as the ratio compounded of the ratio of arc LT to the nadir of arc TM

and the ratio of the nadir of arc ME to the nadir of arc EN .

One of the interesting features of Ibn H. unayn’s translation is his attempt to
reproduce the advantage of the technical expression the under the double of AB (Ź
Ípä tŸn diplĺn tĺc AB) used by the Greek mathematicians in place of the more
unwieldy the line under the double of arc AB (Ź Ípä tŸn diplĺn tĺc AB perifereÐac
eÎjeØa).23 The former expression has the advantage of keeping the reader’s attention
on the lettered objects, unencumbered by unnecessary words. It relies, however, on
features of the Greek language that cannot be reproduced in standard Arabic syntax.
Ibn H. unayn apparently attempted to produce a similar effect through the expression
the correspondent to arc AB (H. @ �ñ�̄ Q�
 	¢ 	�).24 He then gave an explanation of his
terminology. Gerard simply transliterated the first word in naz. ı̄r qaws to produce
nadir arcus. Perhaps he did not fully understand how the Arabic was functioning
and, since a clear explanation of the terminology was given in the text, saw no need
to translate what was obviously a technical expression.

G proves the theorem in two cases without relying on lemmas. Only Disjunction
is shown, although there is a reference to the possibility of other combinations in
the final passages. In G[24], the text refers to “the rest of the things that occur
in the matter of the proportion of the sphere.” This is an obscure phrase, but it
likely refers to Conjunction, the other combination of the arcs of the spherical sector
figure. G[25] then asserts that this combination can also be shown on the basis of
the underlying plane figure, in a manner similar to Disjunction. Finally, G[26]–[29]
is a muddled attempt to show how, for any given arrangement of the plane figure,
different permutations of the arcs can be derived directly by manipulation of the
compound proportion. In fact, the derived permutation is simply the inversion of
the original proportion, so that the intent of the passage is almost lost.

Ma-H introduces the first case by noting, in Ma-H[3], that the two relevant lines
meet “in one of two directions” ( 	á�
�Jêm.Ì'@ øYg@ ú


	̄). In G, this reference has almost

disappeared. In fact, however, the phrase that has been translated with “initially”

23The concise idiom is more common. Also quite common is the partially elided the under the

double of arc AB (Ź Ípä tŸn diplĺn tĺc AB perifereÐac) [Heiberg 1898–1903, eg. 71].

24The Arabic expression is preserved in al-Mu↩taman’s Conclusion [Hogendijk 1996, 40].
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(in primis), at G[8], is probably a translation of the first part of a similar Arabic
phrase. Whatever the case, the absence of any mention of two possible directions
is not, on its own, sufficient reason for considering H more pristine than G [Lorch
2001, 334]. This is, in fact, the only place where Ma-H Spher. III 1 contains more
information than G Spher. III 1.

As Lorch [2001, 328] notes, G is unusual in differentiating the cases on the basis
of the relationship of lines NM and SD. In all other versions, the cases are based on
the relationship between NM and BE. As Lorch himself acknowledges, however, all
other versions, except Ma-H and G, have come under the influence of Ptolemy and
his commentators. Hence, the similarity of Ma-H to these, in this regard, has no
bearing on the authority of Ma-H as a witness to Menelaus’ text. We simply have
two independent sources attesting two different ways of setting out the theorem.
There is no historical or mathematical reason to prefer one to the other.

It should be noted, however, that every other version of the parallel case that is
structurally similar to Ma-H and gives a complete argument, proceeds by an indirect
proof. Since Menelaus himself, in the opening remarks of the Spherics, mentions that
he avoided indirect proof, all these arguments can be taken as spurious. For the
parallel case of Ma-H Spher. III 1, however, there is no argument at all. Moreover,
it is also possible to supply a direct argument for this arrangement. Hence, these
considerations do not help us decide between the authority of the two versions.
Nevertheless, we should bear in mind that any indirect arguments in the Spherics
should be considered suspect.

With the exception of these two differences, Ma-H and G are quite similar.
Neither of them makes any use of lemmas. Both of them make direct reference to
the diagrams as part of the argument. Both of them prove the theorem in only two
cases, although Ma-H makes mention of the fact that another case is possible. Both
of them only prove Disjunction, although G mentions the other combination and
claims that it will be demonstrated along similar lines. We should consider these
basic similarities to be well attested for the theorem that Menelaus actually wrote.

In the Almagest, Ptolemy provided lemmas for the equivalents of G[12]–[16] &
[17]. In the didactic tradition we find a lemma of the step asserted in G[21]. The
argumentation in G, however, makes it clear why Menelaus considered these lemmas
unnecessary.

The lemmas asserting the plane configuration of the sector theorem were proba-
bly part of the toolbox of advanced geometric work. Already at the beginning of the
Hellenistic period, Euclid assumed his readers were familiar with propositions deal-
ing with similar material in his Porisms.25 The lemmas that allow the application

25Heath [1921, vol. 2, 270] claimed that one of Pappus’ lemmas to the Porisms, Coll. VII 137,

was actually the plane sector theorem. In fact, they are not quite the same theorem, although, as

Schmidt [1943, 68] points out, one can be shown from the other as a corollary. For Pappus, see
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of ratios obtaining on the chords to the subtending arcs were handled separately
by Ptolemy and most authors following him. Menelaus, however, appears to have
incorporated them nicely into the text itself. Menelaus simply imagines perpendic-
ulars dropped from the endpoints of the arcs onto a diameter of the sphere (G[14],
[15] & [17]). In both cases, this construction produces similar triangles. Menelaus
leaves it to the reader to supply the full argument based on these triangles. A similar
construction, in G[21], makes it obvious that supplementary arcs have equal corre-
sponding chords. Since the lemmas were all either part of the toolbox of advanced
mathematical work, or apparent from the construction itself, Menelaus saw no need
to establish them separately.

This discussion has allowed us to develop a view of the structural form of the
theorem Menelaus used as the basis of his theory of spherical trigonometry. This was
the beginning of the geometric tradition of the sector theorem. By comparing this
version of the theorem with the well known versions from the astronomical tradition,
we may get a sense of how the theorem was meant to function in the two different
traditions.

IV The early Greek traditions of the theorem

The earliest extant example of the astronomical version of the sector theorem is that
in Ptolemy’s Almagest. For Ptolemy, the sector theorem is a computational device
that solves three primary problems of spherical astronomy: (1) computation of the
rising times of arcs of the ecliptic, (2) instantaneous determination of the position of
the ecliptic relative to the local horizon, and (3) calculation of simultaneous rising
times for fixed stars and the related phenomena of stellar visibility.

There is little doubt that the sector theorem was used in a similar way to solve
some or all of these problems by mathematical astronomers prior to Ptolemy. We are
told by both Porphyry and Paul of Alexandria that the astronomer Apollonarius,
who was probably about contemporary with Menelaus, used similar methods as
Ptolemy to derive rising time values for the signs of the zodiac [Boer and Weinstock
1940, 212; Boer 1958, 1–2]. These two authors are grouped together by Porphyry
as “moderns” who worked to bring precision to the problem of rising times by
using precise geometric methods.26 Moreover, we are told by Pappus that Menelaus
wrote a treatise on rising times [Hultsch 1876–1878, 600–601]. No one has ever
questioned the assumption that this text made use of the sector theorem to produce

Jones [1986, 270].

26According to Porphyry, they worked “by means of the methods of lines” (diĂ tÀn grammikÀn

âfìdwn) [Boer and Weinstock 1940, 212]. This is probably a technical expression for a construction

that can be solved using ancient trigonometric methods. See note 29, below, for a discussion of the

related phrase “by means of lines” (diĂ tÀn grammÀn).



60 Nathan Sidoli SCIAMVS 7

computational solutions.
The form of the sector theorem in the Almagest reflects the needs of this computa-

tional tradition. For the purposes of calculation, both Disjunction and Conjunction
are used depending on which arcs are known and which sought. Hence, Ptolemy ex-
plicitly states each combination. The theorem is proceeded by a number of lemmas
useful to a readership that wishes to follow the argument but may not be familiar
with the advanced mathematical literature. Two of these lemmas are actually not
necessary for the logic of the proof (Alm. I 13.3c & 13.4c) [Toomer 1984, 66-68].
In fact, they are useful in applying the sector theorem to calculations. Using the
compound proportion of the sector theorem, it is generally necessary to know five of
its terms to solve for the sixth. These two lemmas show, however, that all six terms
can also be determined when we know four terms and the sum or difference of the
other two. Every time Ptolemy himself uses the sector theorem, five given terms are
used to solve for the sixth. Hence, the computation lemmas must have been written
by some other mathematical astronomer who actually used them in his spherical
astronomy. As I have shown elsewhere, a type of computation that Hipparchus tells
us he made in his work on spherical astronomy can best be recomputed using the
sector theorem and these lemmas [Sidoli 2004].

Ptolemy’s presentation of the sector theorem is written for an astronomical au-
dience. It assumes the reader has no mathematical knowledge beyond Euclid’s
Elements. The entire presentation is geared toward the use of the sector theorem as
a computational device. Menelaus’ version of the sector theorem, on the other hand,
is aimed at a mathematical audience. He assumes his readers have a more advanced
knowledge base than that provided by the Elements. He skims over a number of
trivial details. He takes it as obvious that the proof provided can be applied to the
other combination of the arcs of the sector figure. Menelaus’ proof is at once more
elegant and more general.

The sector theorem plays an interesting role in the context of Menelaus’ spherical
trigonometry. It is the first theorem in Spher. III and hence the foundation of the
entire theory. In general, Spher. III develops a metrical theory of spherical triangles.
The sector theorem, however, is the only proposition in the entire work that neither
uses nor discusses spherical triangles. Moreover, it does not depend on any previous
theorems in the Spherics. Hence, its role in Spher. III is essentially that of a lemma.
Both its subject and its conclusion are only logically useful to the theory of Spher.
III; it is not itself a result of this theory.

Only one of the possible combinations of arcs is actually demonstrated or stated
in Menelaus’ version of the sector theorem. Nevertheless, he meant his proof of
Disjunction to serve for all combinations. A statement to this effect is still preserved
in Gerard’s version (G[24]–[25]), although its import has become obscured through
translation. Menelaus’ actual use of the sector theorem in the proofs of the remainder
of Spher. III, however, dispels any doubts we might have that this was his intention.
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The sector theorem is used in the proofs of four later propositions: Spher. III
2, 3, 10 & 15.27 In the first two of these, the combination used is Disjunction
as demonstrated in Spher. III 1. In Spher. III 3, however, after the compound
proportion is stated, it is immediately manipulated into another permutation of
the same arcs.28 In Spher. III 10, the sector theorem is used three times. All
three of these are occurrences of a form of Conjunction. In the last of these, the
compound proportion is inverted but it is the same basic permutation. In Spher.
III 15, the sector theorem is used twice in permutations that are only established in
the didactic tradition. This shows that Menelaus meant his proof to serve for both
Disjunction and Conjunction, as well as all possible permutations of these. It is this
wide applicability that is being discussed in the final passages of the Gerard version
of the sector theorem.

For the geometrical purposes of Spher. III, the permutations of the sector theorem
are just as, if not more, important than the two combinations. Menelaus, however,
is introducing the theorem as preparatory to the more important work of spherical
trigonometry dependent on it. He makes his proof as short as possible, despite the
fact that it will serve for both combinations and all the permutations. He assumes
his readers are familiar with the plane versions of the theorem and can readily see
how his proof is applied to all of the spherical cases he will need. In all likelihood,
those features of Menelaus’ treatment that allow it to be at once both more concise
and more general than the other versions of the theorem are due to the fact that he
assumed his readers would already be familiar with the theorem.

V An historical conjecture

Based on Menelaus’ treatment of the sector theorem and its function in his spher-
ical trigonometry, it is improbable that he was the original author of the theorem.
Menelaus probably took a well known theorem of quantitative spherical astronomy
and adapted it to his purposes. On this foundation, he built his new theory of spher-
ical trigonometry. The sector theorem itself, however, was sufficiently simple and
useful that, when Ptolemy came to produce his own spherical astronomy, he based
everything on this theorem. Indeed, few traces of the other ancient traditions of
spherical geometry are present in the Almagest. For example, there is no use of the
techniques of projective geometry found in Ptolemy’s Planisphere. Only one partial
analemma is used, in Alm. II 5, to compute the ratio of the length of a gnomon to

27For Spher. III 2 & 3, the numbering in G and N is the same, however, however, G III 10 = N

III 13 and G III 15 = N III 22–25. In the Ma-H tradition, there are only two books. See note 13.

28The second time this occurs, Abū Nas.r informs us that this manipulation is demonstrated in

material preliminary to the sector theorem [Krause 1936, 66]. He attributes this to “the author of

the book.”
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the length of the principal shadows, given the latitude. In fact, this computation
is not used in the Almagest and it is probably a gesture toward the tradition of
gnomonics, the theory of sundial construction that relied on the analemma. On
the other hand, Ptolemy generally simplifies his approach to spherical astronomy
by making use of some of the elementary theorems of the pure spherical geometric
tradition represented by the Spherics of Theodosius and Menelaus.

We are now in a position to make a strong case that the tradition of applying
the sector theorem to problems of spherical astronomy goes back at least as far as
Hipparchus. Already at the beginning of the 20th century, Björnbo [1902, 65–88]
made a case for this position and a number of the arguments in this section have
their origins in his work. There are two basic sources for these claims: (1) remarks
about Hipparchus’ mathematical work on spherical astronomy, and (2) Ptolemy’s
treatment of the subject in Alm. I, II & VIII.

In his Commentary on the Phenomena of Aratus, Hipparchus refers the reader
to previous work that he produced on simultaneous risings. There are four refer-
ences to this material [Manitius 1894, 128, 148, 150 & 184]. On the basis of his
statements, we know that the work contained methods for determining the rising,
setting and culminating points of the ecliptic when a fixed star, given in equatorial
coordinates, rises or sets. The presentation was evidently mathematical. In three
cases, Hipparchus tells us that this work used proofs; and in the last of these cases,
he tells us that he proceeded by exact, trigonometric techniques [Manitius 1894, 128,
148 & 150].29

Hipparchus’ treatment of a related problem is mentioned in the Oxyrhynchus
papyri. P. Oxy. 4276 tells us that a “compilation (suntĹgmatoc) of Hipparchus” was
used to find the rising point of the ecliptic, the ascendant, “accurately calculated”
(yhfisjeÈc ĆkreibÀc) for a given time at the latitude of Egypt [Jones 1999, 418]. The
calculated value was 28; 35◦; the precision was to either 0; 05◦, or 0; 01◦ and rounded.
Since Hipparchus himself lived at the latitude of Rhodes, and all of the work in his
Commentary was carried out for this latitude, this compilation must have provided
the mathematical tools for finding the rising point of the ecliptic as a function of both
date and latitude and was probably one of his works on simultaneous risings. I have
shown elsewhere that some the mathematical problems handled in these treatises
can be solved by means of the sector theorem, but not by the other ancient methods
of performing calculations on the sphere [Sidoli 2004].

29 The phrase that he uses literally means “by means of lines” (diĂ tÀn grammÀn) and was a

technical expression denoting a geometric construction susceptible to chord table computations. In

every instance where it appears in the Greek technical literature, this phrase denotes a solution

that uses either the plane trigonometric methods of the analemma or the spherical trigonometric

methods of the sector theorem [Björnbo 1902, 83–83; Luckey 1927; Neugebauer 1975, 301–302;

Sidoli 2004].
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Two of the most important topics addressed by the ancients using spherical as-
tronomy were the rising times of arcs of the ecliptic and the simultaneous risings of
points of the celestial sphere. We know that Hipparchus produced works that gave
computational solutions to the problems arising in both of these areas. In what was
apparently his usual style, he presented this material in separate works devoted to
each topic, perhaps more than one.

At this point, some background remarks on numerical studies of rising times in
Greek authors will be helpful.30 Two primary methods for determining a numerical
value for the rising time of an arc of the ecliptic are preserved in technical Greek
astronomical texts. They are founded on different mathematical assumptions and
produce contradictory results. Hypsicles, in his Ascensions, gave the derivation of
a numerical scheme which, although adjusted for the latitude of Alexandria, had its
origins in the work of the Babylonian mathematical astronomers [de Falco, Krause
and Neugebauer 1966]. Ptolemy, on the other hand, derives his table of rising times
from the geometrical considerations of the two-sphere model of the Greek cosmos
[Toomer 1984, 90–103].
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Figure 8: Plot of Hypsicles’ rising times compared with
Ptolemy’s. ¨ = Hypsicles; ? = Ptolemy.

In his Ascensions, Hypsicles gives a value for the rising time of each zodiacal sign
at the latitude of Alexandria. This is simply a linear zigzag function that increases
from the vernal equinox to the autumnal equinox and then symmetrically decreases
to complete the cycle; see Figure 8 [de Falco, Krause and Neugebauer 1966, 38]. As
can be seen from the comparison of these times with Ptolemy’s, for the most part
the numbers are fairly good. Although such numbers were probably adequate for
most astronomical and astrological purposes, the overall pattern they exhibit is, as
Ptolemy says in his Tetrabiblos, “not even close to the truth” [Robbins 1994, 94]. We
may see the structural problems by comparing the values in the Almagest with those
in the Ascensions. We compare Hypsicles’ numbers with those for the rising times

30A useful study of the subject of rising times is provided by Brunet and Nadal [1981].



64 Nathan Sidoli SCIAMVS 7

of the zodiacal signs at Alexandria with Ptolemy’s; see Figure 8 [Toomer 1984, 101].
This shows that, far from being a maximum, the autumnal equinox is actually a
local minimum. The effect becomes more pronounced as the observer moves toward
the equator.

By perusing Ptolemy’s table of rising times, Alm. II 8, we can discern the over-
all behavior of the rising times of arcs of the ecliptic. Figure 9 plots, for every
other latitude, the column of the rising times of 10◦ intervals of the ecliptic, which
Ptolemy included in the table in order to exhibit the functional pattern that we
prefer to find in a graph. At the equator, the rising times are symmetrical about the
cardinal points of the ecliptic; the solstices are equal maxima, the equinoxes equal
minima. As the observer moves north, however, we notice two distinct patterns. (1)
The minimum of the spring equinox decreases while the minimum of the autumnal
equinox increases. (2) The maxima increase together and move from the solstices
toward the spring equinox. This means that for all latitudes, other than the equa-
tor, the rising times are only symmetrical with respect to the equinoxes. Moreover,
the movement of the maxima toward the autumnal equinox means that, for more
northerly latitudes, the rising times about the autumnal equinox are greater than
those about the solstices. Similar patterns also apply to the southern hemisphere;
however, such considerations would have been irrelevant to the ancients.
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Figure 9: Plot of five geographic latitudes from Ptolemy’s
table of rising times. The lowest minimum at the
autumnal equinox, λ = 180◦, is at the equator
(ϕ = 0◦). The other latitudes, increasing with
this local minimum are 16; 27◦, 30; 22◦, 40; 56◦,
and 48; 32◦.

Hipparchus’ work on rising times is discussed by Pappus in his commentary to
Euclid’s Phaenomena 12 [Hultsch 1876–1878, 598–602]. Pappus explains why Euclid
only provides a proof for particular rising-time phenomena for the semicircle of the
ecliptic following Capricorn (270◦ → 90◦) and the related setting-time phenomena
for the opposite semicircle of the ecliptic, that following Cancer (90◦ → 270◦).
Specifically, Euclid shows that, in 270◦ → 90◦, equal arcs “at the points of contact
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of the tropics” (präc taØc sunafaØc tÀn tropikÀn) always set in more time than those
“at the equator” (präc tÄ ÊshmerinÄ). Pappus intends to explain why Euclid does
not discuss the rising times of this semicircle in a similar manner, and generally to
discuss work on the conditions of solvability (diorismìc) for problems involving rising
times.

Part of the explanation lies in work carried out by Hipparchus. Pappus tells us
that,

[1] Hipparchus, in On the Ascensions of the 12 Signs of the Zodiac, demonstrates,

through calculation (di> ĆrijmÀn), that equal arcs of the semicircle following Cancer

that set maintaining some time relation (sÔgkrisin) to one another do not rise in the

same way; [2] for there are some latitudes (tinac oÊkăseic), in which the equal arcs of the

semicircle following Cancer that are nearer the ecliptic always rise in more time than

those at the points of contact of the tropics.

The fist sentence, [1], claims that Hipparchus used numbers, or calculation, to
demonstrate the difference between patterns of rising and setting times in the interval
270◦ → 90◦. He showed that a pair of equal arcs, α1 = α2, whose setting times have
a certain relation at all latitudes, σ(α1) S σ(α2), will not necessarily have the same
relation between rising times at all latitudes.31 This claim may be easily seen in
Figure 9. Since every arc of the ecliptic sets in the same time as the diametrically
opposite arc of the ecliptic rises, the pattern for the setting times on the interval
270◦ → 90◦ can be seen by looking at the rising times for 90◦ → 270◦. Hipparchus
was pointing out that while the relation, S, between any two setting times for equal
arcs in 90◦ → 270◦ is always the same relation at every latitude, this is not the case
for rising times in this interval. In the next sentence, [2], Pappus explains how this
relation changes for rising times at different latitudes.

The Greek that has been translated as “through calculation” literally reads “by
numbers,” di arithmōn. Neugebauer read this is as “through arithmetical methods”
and took these to be in the tradition of Babylonian mathematical astronomy, as
opposed to geometrical methods [Neugebauer 1975, 301].32 There are two problems

31Björnbo [1902, 75] interpreted the Greek differently. He took the qualification “maintaining to one

another some time comparison” (êqousaÐ tina präc Ćllălac qrìnou sÔgkrisin) as specifying overall

conditions for the arcs, under which the statement would hold. He took this to mean “insofern

diese (die Tierzeichen) eine gegenseitige Zeitkomparation haben,” and argued that Hipparchus was

excluding from the discussion polar latitudes, where certain arcs of the ecliptic will neither rise nor

set.

32There are at least two other Babylonian schemes for rising times [Rochberg 2004]. One of them

has essentially the same structure as that in Hypsicles, but is not strictly linear [Neugebauer 1975,

368]. This scheme is attested in a number of non-technical Greek authors [Neugebauer 1975, 712–
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with this reading.
The first is that the pattern Hipparchus is discussing is not evident in the linear

schemes. In the Babylonian methods, although the relation will be the opposite for
rising and setting times it will be the same relation for all latitudes. That Hipparchus
was concerned with the variation of this relation between latitudes is made clear by
the next sentence of the text, [2].

The second issue is linguistic. I am aware of no instance in the Greek technical
literature of di arithmōn being used to denote Babylonian style arithmetical meth-
ods, whereas, in a number of cases, it refers to calculation. The phrase di arithmōn
can also be used in a general sense to refer to a statement that may be exemplified,
or justified, through numbers, and Heron uses the phrase in both senses.33 Eutocius
uses the phrase to indicate Apollonius’ method of finding the ratio of the circumfer-
ence of a circle to its diameter with great precision [Heiberg 1973, vol. 3, 258]. He
is certainly talking about some sort of calculation. The reference to calculation is
supported by comparison with related phrases. The phrase dia tōn arithmōn is used
twice in the Almagest to refer to a trigonometric calculation carried out in order
to confirm a statement that has already been established through pure geometry
[Toomer 1984, 157 & 211]. It is used in the same sense by both Pappus and Theon
in their commentaries, and by Pappus elsewhere in the Collection [Rome 1931–1943,
17, 29, 57, 58, 61, 111, 123, 776, 282, 293, 890, 891 & 1084; Hultsch 1876–1878, 42].
The adjective arithmētikos is also used by Ptolemy to refer to calculation [Toomer
1984, 604]. Hence, there is good reason to believe that Pappus here intended us to
understand that Hipparchus proceeded by means of calculations carried out on the
basis of geometric models.

According to sentence [2], there are “some latitudes” for which an arc of the
semicircle 90◦ → 270◦ beginning at the summer solstice, 90◦, rises in more time
than an equal arc nearer the autumnal equinox, 180◦. The fact that the statement
is qualified to some latitudes, implies that there are other latitudes for which this is
not the case. The context of the discussion as an explanation for Phean. 12 makes
it clear that the arcs nearer the autumnal equinox are the same arcs Euclid treats
as having an endpoint at the equinox.

The statement is again best explained by referring to Figure 9. In the southerly
latitudes, we see that the rising times in the vicinity of autumnal equinox, 180◦, are
less than those around the solstices, 90◦ and 270◦. At a latitude equal to the obliquity
of the ecliptic, the rising times at 180◦ are equal to those at 90◦ and 270◦; however,
because the maxima are closer to the solstices, the rising times of arcs beginning at

724]. An even cruder scheme is preserved in the Cuneiform sources but does not seem to have been

transmitted to the Greco-Roman world [Rochberg 2004, 89].

33The two uses in Definitions simply mean “through numbers,” [Heiberg 1907, 140]. There is a use

in On Measurements, however, that clearly refers to calculation, [Schöne 1903, 160].
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90◦ will still be greater than equal arcs with an endpoint at 180◦. Since the minimum
at 180◦ increases for more northerly latitudes, while the maxima move toward this
point, at some northerly latitude the rising time of every arc with an endpoint at
180◦ will be greater than an equal arc starting at 90◦. Pappus’ remark indicates
that Hipparchus articulated these features of rising time phenomena on the basis of
numbers.

This reading of Pappus’ text is at variance with two earlier interpretations.
Björnbo [1902, 74–75] took [2] to mean that, for some latitudes, for any two equal
arcs on the interval 90◦ → 180◦ the one closer to 180◦ rises in more time than
that toward 90◦. Neugebauer [1975, 301] construed the passage to mean that the
rising times monotonically increase on the interval 90◦ → 180◦, and claimed that
Hipparchus put forward a Babylonian numerical scheme.34

Both of these readings involve taking präc as indicating direction toward and
êggion as nearer. Although direction toward is the primary meaning of präc when
it governs the accusative case, where it is used with the dative, as here, it generally
denotes true proximity. Furthermore, as stated above, while Pappus speaks loosely
using “nearer,” the broader context reveals he is talking about the same arcs that
Euclid described as “at the equator” (präc tÄ ÊshmerinÄ).

Neugebauer’s reading makes nonsense of the restriction to some latitudes, since,
if Hipparchus had proposed a Babylonian scheme along the lines of Hypsicles’, [2]
would be true everywhere. Moreover it would make no sense for Pappus to re-
fer to the use of Babylonian style rising time schemes in order to explain Euclid’s
Phaenomena; they simply will not serve this purpose. Björnbo’s view puts him in
the awkward position of having to explain where Hipparchus went astray, which
he does by invoking an inexact chord table [Björnbo 1902, 75]. The reading pro-
posed above has two advantages. It stays true to the sense of the Greek and it
finds Hipparchus making a statement that is both true and evident on the basis any
reasonably accurate table of rising times.

This passage shows that Hipparchus’ treatment of rising times was based on
the geometrical properties of the two-sphere model. His study allowed him to make
sophisticated statements about rising time phenomena that would best be exhibited,
using ancient methods, in a table of rising times. There is no reason not to believe
that Hipparchus derived his table of rising times using the sector theorem. We will
see below that Ptolemy’s treatment of rising times also supports this conjecture.

The conjecture that Hipparchus treated these problems by means of the sector

34In fact, his summary of [2] describes a reading that agrees with the translation given above.

Nevertheless, he immediately interprets this in a way that does not follow. This issue is exacerbated

by a second summary of the passage that Neugebauer [1975, 768] gives when discussing Pappus.

Here, his reading of the passage clearly agrees with mine, but he again takes no notice of the

qualifying some.
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theorem is again born out by Ptolemy’s treatment of this topic in the Almagest.
Ptolemy develops a complete theory of spherical astronomy in Alm. I 14–16, II 1–13
& VIII 5-6 [Toomer 1984, 69–130, 410–417]. Unlike a number of other theories in
the Almagest, the presentation of this material is exactly modeled on the deductive
structure of pure mathematical texts in the Greek tradition. There are relatively
few mathematical prerequisites. Along with the Elements and chord table, necessary
for all the mathematics in the text, this theory requires the sector theorem and a
toolbox of elementary theorems from the Spherics of both Theodosius and Menelaus
[Heiberg 1927; Krause 1936]. The final sections of Alm. I develop two tables that
are used in almost all the following calculations. These list the declination and right
ascension of degrees of the ecliptic. Following this preliminary matter, the theory
divides into five topics: (1) the defining characteristics of geographic latitude (Alm.
II 1–6), (2) rising times (Alm. II 7–8), (3) miscellaneous problems (Alm. II 9), (4)
instantaneous positions of the ecliptic (Alm. II 10–13), and (5) simultaneous risings
and stellar visibility phenomena (Alm. VIII 5–6). Ptolemy’s presentation is very
efficient and there is little material that is not used to derive further results. All
of the excess that does occur can be attributed to historical strata in the text, or
gestures to historical topics that Ptolemy does not consider worth developing in
full.35

The most impressive mathematical results of Ptolemy’s spherical astronomy are
the table of rising times and the table of instantaneous positions of the ecliptic
(Alm. II 8 & 13). They tabulate functions of two strong variables. In both cases,
the derivations are demonstrated through the example of a single latitude. Instead
of his own latitude of 30; 22◦ for Alexandria, Ptolemy uses the latitude of Rhodes,
36◦. This is the latitude at which Hipparchus carried out his astronomical work.36

35Of 41 units (theorems, calculations, metrical analyses and lists) of mathematical text in the sec-

tions of the Almagest on spherical astronomy, only seven are not used later in the text. Three of

these, in Alm. I 13 & II 11, are very trivial corollaries, taking up less than ten lines of Heiberg’s

text (H71,14–H72,10; H73,11–H74,8; H156,3–H156,9). These were probably carried over from one

of Ptolemy’s predecessors. (The first two are discussed above on page 60.) The only other excess

material is the gesture toward gnomonics, Alm. II 5, discussed above (page 61), a surplus compu-

tation of rising times, in Alm. II 7 (H120,23–H124,22), and the treatment of simultaneous risings,

Alm. VIII 5 & 6, both discussed below (page 69).

36As Neugebauer [1975, 733] points out, 36◦, may simply have been a standard convention taken

as the reflection in the quadrant of the latitude of the arctic circle, having no important connection

to Hipparchus’ work. It is also possible, however, that this value gained currency as a standard

for both astronomical and geographic studies because Hipparchus made much use of it. It is worth

noting that there is a clear connection between the treatment of terrestrial latitudes which Strabo

attributes to Hipparhus and that found in Alm. II 6 and especially the table of rising times, Alm.

II 8 [Jones 1917–1932, vol. 1, 506–520; Toomer 1984, 82–90 & 100–103; see also Jones 2002].
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The table of rising times, Alm. II 8, is the centerpiece of Ptolemy’s spherical
astronomy and simplifies the computations of a number of subsidiary problems, as
exemplified in Alm. II 9. A desire to determine the local position of the ecliptic would
have been made the more urgent by Ptolemy’s decision to use ecliptic coordinates for
his star catalog, whereas Hipparchus generally worked with equatorial coordinates
[Duke 2002]. The table of the instantaneous positions of the ecliptic, Alm. II 13, gives
a numeric solution to this problem. A treatment of the characteristics of geographic
latitude, Alm. II 6, is preliminary to both of these topics. For the purposes of
the Almagest, however, the mathematical treatment of simultaneous risings, Alm.
VIII 5, could be dealt with in a cursory manner. This is presumably because the
mathematics of this topic is so cumbersome when compared to list based approaches
such as those of his own Phases or Hipparchus’ Commentary on Aratus.

In general, Ptolemy’s approach to spherical astronomy was to use elementary
theorems from Theodosius and Menelaus combined with calculations made with the
sector theorem. This allowed him to use the symmetry of parallel circles and the
geometry of spherical triangles to simplify his approach. In just those two topics
that we know Hipparchus treated mathematically, however, Ptolemy relies only on
the sector theorem.

In fact, Ptolemy gives two methods for calculating a table of rising times, whereas
for his purposes one is perfectly sufficient. In the middle of Alm. II 7, Ptolemy
shows how the sector theorem alone can be used to calculate the rising times of
individual signs and he points out that this method can also be used to calculate
the rising times of smaller arcs [Toomer 1984, 92–94]. In the final part of Alm. II
7, however, he sets out another method that he considers to be “easier and more
methodical” (eÎqrhstìteron kaÈ mejodikÿteron) [Heiberg 1898–1903, p. 1, 125]. It
is a batch calculation that is simplified by considerations of symmetry based on
the mathematics of Theodosius and Menelaus. This is the only place in Ptolemy’s
spherical astronomy where he gives two methods for calculating the same table.
Björnbo [1902, 74] took Alm. II 7 as evidence that Hipparchus’ table of rising times
only included the rising times of whole signs. It is probable, however, that Ptolemy’s
concession that we could use the sector theorem alone to find the rising times of
smaller arcs was a reference to the fact that the older tables were so produced,
despite the laboriousness of the method.

In the final sections of Alm. VIII, Ptolemy shows how the sector theorem can be
used to treat simultaneous risings and stellar visibility phenomena [Toomer 1984,
410–417]. The computations are quite involved, using at least two applications of
the sector theorem. Ptolemy has no interest in actually carrying out these laborious
calculations. He merely goes through the metrical analyses, showing in each case
how one would proceed. These sections are probably a gesture to an important
historical topic, which Ptolemy feels should be mentioned even though it was unnec-
essary for the Almagest. Ptolemy’s own mathematical treatment of these problems
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was evidently given in a separate treatise discussed at the beginning of the Phases
Heiberg [1907, part. 2, 3-4]. I have argued elsewhere that Hipparchus’ work on si-
multaneous risings was mathematically related to this work [Sidoli 2004]. Ptolemy’s
treatment of this material makes sense when we realize that he is giving a short
summary of mathematical methods that his predecessors developed in full detail.

VI Conclusion

By examining the early transmission of Menelaus’ Spherics and its relation to other
work on the sector theorem, we are able to select two versions that are likely to
contain a text of the sector theorem close to that which Menelaus actually wrote. In
fact, these two versions exhibit characteristic features that distinguish them from all
other versions of the theorem. A close reading of these two versions in the context
of the Spherics as a whole makes it clear that Menelaus did not intend his readers
to take the sector theorem as his original work. On the contrary, he relies on the
reader’s familiarity with the theorem to move through it as quickly as possible.

Menelaus treats the sector theorem as a stock component of mathematical astron-
omy. Our evidence for the history of spherical astronomy before Ptolemy suggests
that the use of the theorem goes back at least as far as Hipparchus. An investiga-
tion of the few ancient references to Hipparchus’ spherical astronomy shows that he
used computational methods at least as powerful as the sector theorem. Ptolemy’s
treatment of spherical astronomy corroborates this suggestion. He seems to have
intended his work to be read in comparison with that of his predecessors. In every
case where he solves a problem that we know Hipparchus also solved, he shows how
it can be done using the sector theorem alone, even though this is not usually his
own method.

A thorough appraisal of the evidence shows that we should admit that the spher-
ical trigonometry based on the sector theorem predated Menelaus and that in all
likelihood it went back at least as far as the work of Hipparchus in the late Hellenistic
Period.
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Appendix A: Texts of Spher. III 1

The Arabic Version

I) Ma-H Spher. III 1 (The Māhān̄ı-Haraw̄ı edition):37

ú
æ��®Ë@ 	áÓ �èYg@ð É¿ð @'X k. @' 	P'H. ú
æ�ñ�̄ 	á�
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37This text was edited by Lorch [2001, 340–342]. In the Ma-H tradition, the sector theorem is

Spher. II 8.
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The Latin Version

II) G Spher. III 1 (The Gerard translation):38

Sint in superficie spere duo arcus duorum circulorum magnorum super quos sint
.n.e.l.n. Et protraham inter eos duos arcus .e.t.a.l.t.m. et secent se super punctum .t.
Dico ergo quod proportio nadir arcus .a.n. ad nadir arcus .a.l. est composita ex pro-
portione .n.e. ad .e.m. et ex proportione nadir arcus .m.t. ad nadir arcus .t.l. Et ego

5 quidem non significo cum dico nadir arcus nisi lineam, que subtenditur duplo illius
arcus. Secundum quod sit ille arcus minor semicirculo. Cuius hec est demontratio.
Ponam centrum spere punctum .b. Et protraham lineas .n.l.n.m.l.m.t.b.e.b.a.s.b.s.d.
Et concurrant in primis due linee .n.m.s.d. cum protrahuntur super punctum .c. se-
cundum quod est in forma. Et protraham lineam .e.c. Ergo erit punctum .c. in

10 unaquaque duarum superficierum duorum arcuum .a.t.e.n.m.e. at unumquodque
duorum punctorum .e.b. iterum erunt in istis duabus superficiebus. Ergo est .c.e.b.
linea una recta. Et cum hac forma sit ita, tunc proportio .n.s. ad .s.l. est sicut pro-
portio composita ex proportione .n.c. ad .c.m. et ex proportione .m.d. ad .d.l. Verum
proportio .n.c. ad .c.m. est sicut proportio perpendicularis cadentis ex puncto .n.

15 super .c.e.b. ad perpendicularem cadentem ex puncto .m. super lineam .c.e.b. Iterum

38Paris BN Lat. 9335 48v-49r.

3 .a.l. ] .e.m. MS. A marginal note states that .a.l. is found “in alio.”

4 .m.t. ] .s.t. MS.
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et, perpendicularis cadens ex puncto .n. super lineam .b.e.c. est medietas corde dupli
arcus .n.e. Et perpendicularis cadens ex puncto .m. super illam lineam est medietas
corde dupli arcus .e.m. Ergo, proportio .n.c. ad .c.m. est sicut proportio nadir arcus
.n.e. ad nadir arcus .m.e. Et similiter etiam declaratur quod proportio .n.s. ad .s.l.

20 est sicut proportio nadir arcus .n.a. ad nadir arcus .a.l. et quod proportio .m.d. ad
.d.l. est sicut proportio nadir arcus .m.t. ad nadir arcus .t.l. Ergo proportio nadir
arcus .n.a. ad nadir arcus .a.l. est sicut proportio composita ex proportione nadir
arcus .m.t. ad nadir arcus .t.l. et ex proportione nadir arcus .e.n. ad nadir arcus
.m.e.

n

m

c e b

d

t

s

l

a

25 Et iterum nos ponemus lineam .s.d. equidistiantem linee .n.m. et complebimus
duas mediatates duorum circulorum .e.t.c. et .e.n.c. secundum quod est in forma
secunda. Et quoniam in duabus superficiebus .e.n.c.e.t.c. sunt due linee equidis-
tantes, que sunt .s.d.m.n. erit sectio communis istis duabus superficiebus, que ist
linea .e.c. equidistantes duabus lineis .s.d.m.n. Et quoniam perpendicularis cadens

30 ex puncto .n. super linea .c.b.e. est mediatas corde dupli arcus .e.n. et est iterum
mediatas corde dupli arcus .e.m. erit nadir arcus .e.n. equalis nadir arcus .e.m. Et
quoniam linea .m.n. est equidistans linee .d.s. erit proportio .n.s. ad .s.l. que est
sicut proportio nadir arcus .n.a. ad nadir arcus .a.l. sicut proportio .m.d. ad .d.l.
que est sicut proportio nadir arcus .m.t. ad nadir arcus .t.l. Ergo proportio nadir

35 arcus .n.a. ad nadir arcus .a.l. est sicut proportio composita ex proportione nadir
arcus .m.t. ad nadir arcus .t.l. et ex proportione nadir arcus .n.e. ad nadir arcus .e.m.
cum sit ei equalis. Et per huius modi uiam iterum declarantur reliqua que accidunt
de hac specie proportionis in nadir horum arcuum. Et sciemus illud ex dispositione
linearum que iam secuerunt se in superficie quem diximus. Et declaruntur relique

40 species huius descriptionis sicut nos declaramus in hac forma. Quoniam proportio
nadir arcus .a.l. iterum ad nadir arcus .a.n. est sicut proportio composita ex pro-

30 .e.n. ] .c.n. MS.

31 .e.m. ] .e.n. MS.
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portione nadir arcus .l.t. sicut nadir arcus .t.m. et ex proporione nadir arcus .m.e.
ad nadir arcus .e.n. Et illud est quoniam iam nuper ostendimus quod proportione
nadir arcus .n.a. ad nadir arcus .a.l. est sicut proportione composita ex proportione

45 nadir arcus .m.t. ad nadir arcus .t.l. et ex proportione nadir arcus .n.e. ad nadir
arcus .m.e. Cum ergo convertendo proporione erit proportio nadir arcus .a.l. ad
nadir arcus .a.n. sicut proportio composita ex proportione nadir arcus .l.t. ad nadir
arcus .t.m. et ex proportione nadir arcus .m.e. ad nadir arcus .e.n.
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Appendix B: Mathematical Summary of G Spher. III 1

It will be helpful to give a mathematical overview of the argument in G Spher. III
1. Because the text does not make every step of the proof explicit, there are places
where the summary is mathematically more complete than the text itself. In the
final passages, the summary gives a plausible mathematical interpretation of some
obscure remarks.

I adopt the following notational conventions. na(AB) is the nadir of arc AB,
such that na(AB) = Crd(2AB). ⊥ (N, AB) is the perpendicular dropped from
point N to line AB. All sentence numbers refer to the translation of G Spher. III
1 (see pages 55–57).

Mathematical Summary:

[1]–[4]: Given Figure 6, to show:

na(AN)
na(AL)

=
na(NE)
na(EM)

× na(MT )
na(TL)

.

42 .t.m. ] .a.n.t.m. MS.

42 .m.e. ] .m.m.e. MS.
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[5]–[8]: We complete Figure 6. [Case A]: let NM and SD meet at C.

[9]–[11]: Since point C is in both planes ATE and NME, while points E and
B are likewise in both planes ATE and NME, therefore CEB is the rectilinear
intersection of these planes.

[12]: By the plane sector theorem,

NS

SL
=

NC

CM
× MD

DL
.

[13]–[15]: Because of similar triangles,

NC

CM
=
⊥ (N, CB)
⊥ (M, CB)

;

but

⊥ (N, CB) = na(EN)

⊥ (M, CB) = na(EM);

therefore

NC

CM
=

na(EN)
na(EM)

.

[17]: Because of similar triangles,

NS

SL
=
⊥ (N, AB)
⊥ (L,AB)

,

while

⊥ (N, AB) = na(NA)

⊥ (L, AB) = na(AL);

and, again because of similar triangles,

MD

DL
=
⊥ (M, TB)
⊥ (L, TB)

,

while

⊥ (M,TB) = na(MT )

⊥ (L, TB) = na(TL).
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[18]: Therefore,

na(AN)
na(AL)

=
na(NE)
na(EM)

× na(MT )
na(TL)

.

[19]: [Case B]: let NM ‖ SD. We complete Figure 7.

[20]: Since NM and SD are in planes ENC and ETC,

NM ‖ SD ‖ EB.

[21]: Since NM ‖ EB,

⊥ (M, EB) = ⊥ (N,EB).

[22]: Again since NM ‖ SD, and because of similar triangles,

NS

SL
=

MD

DL
=
⊥ (N, AB)
⊥ (L,AB)

=
⊥ (M, TB)
⊥ (L, TB)

;

but

⊥ (M,TB) = na(MT )

⊥ (L, TB) = na(LT ),

and

⊥ (N, AB) = na(NA)

⊥ (L, AB) = na(AL).

[23]–[24]: Therefore

na(AN)
na(AL)

=
na(MT )
na(TL)

× na(NE)
na(EM)

,

because

na(MT )
na(TL)

=
na(MT )
na(TL)

× na(NE)
na(EM)

.

[24]–[25]: In the same way, we demonstrate the other proportion that holds for
the nadirs of the arcs in the spherical sector figure. We make this demonstration
on the basis of the plane sector theorem.

[26]–[29]: Moreover, the permutations of either arrangement can be shown on the
basis of the plane figure for that arrangement. We simply manipulate the compound
proportion according to the operations of ratio theory.



SCIAMVS 7 The Sector Theorem 77

References
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