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I Introduction

Euclid’s Flements has been transmitted into many languages since it was first com-
posed in Greek and has provoked extensive discussions in many branches of this
transmission. The Arabic transmission was no exception. Once it became available
in Arabic during the eighth and ninth centuries, Euclid’s mathematical classic was
“corrected”, summarized, given addenda, reduced to extracts, commented upon in
whole and in part, given alternate demonstrations, paraphrased, and much more.
These discussions were not limited to any specific time period, but continued to
appear regularly until the nineteenth and twentieth centuries.

This paper presents a hitherto unstudied addendum to an edited version of a
popular Euclidean treatise. The addendum, entitled Book XVI, comprises nineteen
propositions describing techniques for constructing polyhedra within other polyhe-
dra or within spheres. Thus it develops themes related to those of book XV, itself
a late Greek addendum to the genuine Euclidean treatise. The contents are, how-
ever, in the tradition of Archimedes rather than Euclid. The first part of Book XVI
describes construction of semiregular truncated polyhedra inscribed within regular
polyhedra (Platonic solids) and within spheres. The addendum ends with what may
be the earliest discussion of the construction of a representative example from each
of the classes of semiregular polyhedra known today as prisms and antiprisms. Thus,
although the editor or copyist who attached this book XVI to the manuscript clearly
intended this material as a kind of continuation of the Flements, the intention of
the original author is less clearly Euclidean.

II Manuscript

Book XVI is appended to a medieval Arabic manuscript the bulk of which is an
edited version of the well-known and influential redaction Tahrir Kitab Ugqlidis by
Nasir al-Din al-Tust (597 AH/AD 1201 - 672 AH/AD 1274). This Book XVI is at
present known only in this unique copy whose colophon gives the date of copying as
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1003 AH/AD 1593/4.1 The treatise contains 455 pages,? of which the last thirteen
(pp. 443-455) comprise Book XVI.

The present codex initially appears to be a pastiche of two manuscripts. Pages
1-202 contain a copy of book I from al-TusT’s treatise. The text is written in a flow-
ing, almost scrawling, nasta‘liq hand with widely spaced lines, ten or eleven lines
per page, presumably to facilitate recording comments and notes, implying that it
was produced for use in a pedagogical setting.?> Each folio ends with a guide word
to ease the transition to the next folio. This feature is helpful to the modern reader
because an extra sheet (occasionally two sheets) for recording additional comments
is inserted between nearly every pair of folios.* There are extensive annotations in
Arabic, although a few notes are in Persian, both interlinearly and in the margins.
It sometimes appears that there may be at least two commentators recording these
notes because the script is sometimes produced with a significantly finer pen. Stylis-
tic differences also imply multiple commentators, for some of comments are keyed to
the text through the use of numbers while others cite passages by using the Arabic
formula “qawluhu” (his statement) followed by the first phrase of the passage to be
explained or commented upon. Because of damage to the margins, the marginalia
are sometimes not complete.

From page 203, beginning near the end of the enunciation of proposition I, 48
and continuing through the remainder of the manuscript, the text is written with
approximately twenty normally spaced lines per page. The change takes place within
the proposition and at the end of the folio without any sort of repetition which
might be expected in a true pastiche. Two possible scenarios suggest themselves.
Either the entire manuscript was copied by the same person or someone with very
similar writing style received the slightly incomplete first section and copied out the
remainder of the Tahrir, adding Book XVI at the end. The latter appears more
likely. The hand used in the second section of the manuscript is also nastliq, but
finer, more elegant, and with a somewhat different orthography (no longer writing
the letter aleph of the definite article “al-” below the word, as is done routinely in
the first section of the manuscript).

Beyond differences in handwriting, there are other variations that incline me to
think that the manuscript was prepared by two persons or at least in two distinct

'"Hyderabad (India), Oriental Manuscripts Library and Research Center [formerly Andhra Pradesh
State Central Library], riyadi 496. The colophon appears on page 455.

2The modern cataloger has adopted pagination, rather than foliation, perhaps because of the fre-
quent interleaving of material.

3The pattern of wide spacing is seen in other examples of manuscripts intended for instructional
purposes [De Young 1986, 10].

1A few of these interleaved sheets have been misplaced by readers. The sheet dealing with the

various cases of proposition I, 2, for example, is now located at pages 345-346.



SCIAMVS 9 Book XVI: A Mediaeval Arabic Addendum to Euclid’s Elements 135

stages. For example, in the second part of the manuscript guide words are no longer
used to smooth the transition from one folio to the next. There are occasional inter-
leaved notes in the second part of the manuscript, although not nearly so frequent
as in the earlier section. In the first portion of the manuscript, we frequently find
that over-lining is used to pick out the letters used to label geometric points. This
style is abandoned in the latter section, where over-lining is most typically used
to highlight the first words of the enunciation of each proposition. In the second
section, proposition numbers (using abjad or alpha-numeric notation) appear to be
given in red,® while they are usually (but not exclusively) appear to be in black
in the first section. In the second portion of the manuscript, there is considerable
marginalia in the form of commentary notes, but fewer than in the first portion.
Most of these notes appear to be in a hand very similar to that used in the copying
of the text itself, while the notes in the first section appear to be in two or three
different hands.

The manuscript contains an edited version of the text of al-Tust. This editing
process included, for example, altering the standard phrase “aqulu” (I say) which
introduced many of the comments by al-Tust to the phrase “qala al-muharrir” (the
redactor or editor said). Moreover, the commentary notes included within the body
of the manuscript are not precisely the same as those found in most manuscripts
of the Tahrir. Some notes are omitted completely, others are present only in the
margins of the manuscript, some are modified or abridged, and about two dozen
notes are unique to this manuscript. Many of the omissions are of alternate demon-
strations which al-Tust had borrowed from Ibn al-Haytham’s Kitab fr hall shukuk
kitab Uqlidis [De Young 2008b].6 It is probable that the same person who pro-
duced the second part of this edited text of the Tahrir (if different from the person
who produced the first part) also appended Book XVI to the manuscript because
a note on Thabit’s added proposition at the end of book XIII states: “As for the
way of drawing the two shapes, and the constructing of the two magnitudes which

constitute their sides (edges), the remainder is in book sixteen.””

IIT Diagrams
In the first section of the manuscript, diagrams are typically placed within the text

column. Only occasionally do they extend out into the margins. If in the middle of
the column, the diagram will either be placed in an empty band stretching across the

5That is, they appear less black than the surrounding text in the photocopy available to me.
5These alternate demonstrations were also omitted from Qutb al-Din al-Shiraz1’s Persian translation
of the Tahrir. See De Young [2007]. Whether there is any connection between these two observations
awaits further investigation.

" Riyads 496, p. 429.
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column or in a small open space bounded on both sides by text. Sometimes the text
encroaches on this “white space” so that it completely surrounds the diagram. Such
diagrams imply that the manuscript diagrams were constructed during the writing
/ copying itself and not added later. It appears that the typical methodology of the
scribe was to copy out the first portion of the proposition text, then stop to draw the
diagram, and afterward finish copying the remainder of the text of the proposition.
This methodology also helps to explain why diagrams are so often found at the end
of the proposition they represent.

In the second part of the manuscript, diagrams are most frequently placed in the
outer margins, although larger diagrams are sometimes inset slightly into the text.
This inward extension is usually in the form of a square or rectangular “window” but
in a few diagrams the text is filled in up to the margins of the diagram. Occasionally,
diagrams in the second part of the manuscript are rotated 90° relative to the text
direction. This rotation applies both to the base line of the diagram and to the labels
applied to identify its points. In some cases, this rotation appears to be dictated by
space considerations; in other cases it appears that only a small adjustment of scale
would have made it possible to fit the diagram into the margin without rotation.
Diagrams in the first part of the manuscript are not rotated. Whether this lack
of rotation reflects the fact that diagrams in book I typically require less space,
whether the use of more widely spaced lines itself gave greater placement options for
diagrams, or whether the copyist was consciously motivated by pedagogical concerns
is at present a moot point.

In general, the diagrams appear to be executed with a straight-edge and compass.
Those in the first portion of the manuscript are typically more precise than those
in the latter portion, where one detects a certain carelessness — lines frequently do
not meet one another neatly at a point and baselines are not always parallel to the
bottom of the page or to the line of the text but appear to be tilted a bit. Some
lines and a few diagrams appear to be merely sketched, although the majority seem
to be carefully drawn. In the second part of the manuscript, labels are frequently
placed directly on the diagram points rather than beside them as is typical in the
first portion. Specific numerical examples have been inserted into some diagrams
in the arithmetical books (books VII-IX). Whether they are introduced by a later
reader or by the copyist is impossible to decide based on our current evidence.

IV Authorship

The identity of the author of this edition of the Tahrir and its addendum, Book
XVI, is unknown. No name is mentioned in the commentary notes on al-Tius1’s
introduction, where one might expect to find the author or source identified, nor is
an author or editor named in the colophon. On a flyleaf at the end of the codex,
however, there are three notes, in a hand very similar to that of the second part of
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the treatise itself. The second of these notes states: “The end of the communications
of the Mulla <and> Qadi, the erudite sun of the religious community and the faith,
Muhammad al-Khafr1.”®

The fact that the note is on the flyleaf, following the page containing the colophon,
already suggests that the statement may be an addition by some later reader. The
orientation of the note, not parallel to the bottom of the page but placed at an
angle across the page, also suggests that it was not intended to be seen as part of
the treatise itself. Still, the reference to al-KhafiT is tantalizing since al-KhafrT was
a competent student of mathematical astronomy and cosmography. And the date
of copying places the manuscript at about the time when al-Khafr1 was active. An
additional hint that this treatise might represent the work of al-Khafr1 comes from
a remark of Saliba [1994, 19] that in al-KhafiT's Takmila (literally, completion, but
in reality a commentary) to the Tadhkira of al-Tusi, he followed the text of al-Tust
word for word until he felt he had something of his own that he wanted to insert. It
seems reasonable to assume he might well employ the same technique when dealing
with other mathematical texts such as al-Tust’s redaction of Euclid. In light of
the report by Saliba, then, it is possible that this treatise may be a commentary
of al-Khafr1. If this hypothesis should be correct, this manuscript is the only copy
of the commentary that I have been able to identify. Other copies, of course, may
exist, perhaps erroneously cataloged as copies of the Tahrir. These considerations
are intriguing, but the evidence is very limited and only circumstantial.

Relatively little is known of the life of al-Khafri. Even the correct form of his
name is a matter of debate. To Western historians, he is known almost exclusively
for his work in mathematical astronomy and cosmography.? We do know that a small
mathematical tract in Arabic on a problem in al-Tust’s Tohrir has been explicitly
attributed to him.'© But so far as I can determine, none of the standard bio-
bibliographical sources credit him with a major commentary or edition of Euclid. I
conclude that, without further information, the question of authorship must remain
undecided for the present.

8Riyadi 496, p. 456: Akhar afadat al-milla al-qadi al-mutabahhir shams al-milla wa’l-din
Muhammad al-Khafri. The first to call attention to this possible connection to al-KhafrT was
Brentjes [1998, 73].

9The most complete modern study is Saliba [1994]. See footnote 6 (pp. 36-37 of Saliba’s study) for
an introduction to the biographical literature discussing al-Khafri. I have not been able to see the
non-Western sources cited in this note.

9This work, “Fa’idah al-Fawa’id” (Tehran, Majlis 1805), is mentioned in Sezgin [1974, 113].
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V  Book XVI: Physical Description

Book XVI follows the edited Books I-XV of al-Tust’s Tahrir, but is separated from
it by a blank page (number 442), on which is written a Persian notice in another
hand, placed upside down relative to the main body of the text. This page has
been damaged and the statement is now incomplete. From what remains, it seems
to have no relation to the appended material that follows it. Book XVI appears to
have been copied in the same hand as the previous portion of the treatise. It consists
of 19 propositions. Only the first four and the last are explicitly numbered using
the typical Arabic alpha-numeric abjad numbers.'! Each of these propositions is
also indicated by an over-lining of the first words of the enunciation. The remainder
are identifiable only by a slightly larger space between the last words of the previ-
ous proposition (easy to recognize because each proposition typically ends with the
stereotypical phrase wa-dhalik ma aradna an nubayyan — “that is what we wanted
to show”) and the first word of the enunciation of the new proposition. Several
propositions are followed by short generalizing notes or porisms.

The diagrams that accompany each of its nineteen propositions, too, appear to
be executed by the same draftsman as those of the second part of the manuscript.
They also exhibit the same style of label orthography and placement of letters within
the diagrams. They are placed in the margins at the outer edges of the text column
and typically extend somewhat into the text column. There seems to be a prefer-
ence for placing the diagrams at the bottom of the column when this is practical.
Otherwise, they come at the end of the propositions. Several of the diagrams have
been considerably damaged by crumbling of the margin and two have been almost
completely destroyed. In most cases, however, the general features of the diagram
are clear or can be reconstructed from the symmetry of the figure. The labels of
geometrical elements within the diagrams follow the typical abjad sequence, but the
copyist is not consistent in how they are assigned within the diagrams. Sometimes
the order of labels follows a clock-wise pattern and sometimes anti-clockwise. Many
points in the diagrams are not labeled since the author identifies only those points
that are actually used in the demonstration. These diagrams appear not to have
been checked carefully against the verbal statements of the text because in at least
one case the actual construction of the diagram is inconsistent with the geometric
relations described in the proposition.

' The ninth proposition is given its abjad number in the margin, rather than immediately preceding

the first words of the enunciation. It is the only proposition labeled in this way.
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VI Book XVI: Mathematical Overview

These nineteen propositions deal with the construction of several semiregular poly-
hedra either within regular polyhedra or within spheres. The discussion can be seen
as a kind of extension of book XV of the Arabic transmission of Euclid’s text. Book
XV gives instruction for inscribing one regular polyhedron within another. Book
XVI now turns to less regular polyhedra and shows how they may be inscribed in
regular polyhedra.

Proposition I demonstrates a technique that will be applied to construct the
truncated versions of each of the regular polyhedra:

I. To construct an equilateral and equiangular hexagon in an equilateral and equiangular

triangle.

To do so, (1) one finds the center of the triangle, (2) extends perpendiculars from
that center to the sides of the triangle, (3) connects the center to each vertex of
the triangle, (4) marks off on each of these center-vertex lines a distance equal to
the perpendiculars, and (5) erects perpendiculars at these points extending to meet
the sides of the triangle. An analogous procedure will permit us to create in any
equilateral and equiangular polygon another equilateral and equiangular polygon
with twice as many sides as the original polygon.

The author could have used an alternative technique, beginning by inscribing a
circle within given equilateral triangle ABG (Elements IV, 4) and drawing tangent
lines KET,0ZS, MHN (indicated in the drawing by dashed lines) perpendicular
to the angle bisector at the point where each angle bisector crosses the circle and

extending in either direction to meet the sides of the triangle.
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Then the small triangles AKT, BSO,GMN will each be similar to the original
triangle, and so will also be equilateral. The side of each of these smaller triangles
will be a third of the side of the original triangle. It is then clear that hexagon
KMNSOT is also equilateral and equiangular. A similar procedure can be used
to generate an equilateral and equiangular polygon with twice the number of sides
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within any equilateral and equiangular polygon.'? It is not clear why the author
chose his technique rather than this procedure.

The author uses his technique in the next propositions in order to construct a
semiregular truncated polyhedron within the Platonic solid of the same kind.

II. To construct in a regular tetrahedron (pyramid) a truncated tetrahedron having eight
equilateral faces, four hexagons and four triangles.

III. To construct in an octahedron a truncated octahedron with fourteen equilateral
faces, eight hexagons and six squares.

IV. To construct in an icosahedron a truncated icosahedron with thirty-two equilateral
faces, twenty hexagons and twelve pentagons.

V. To construct in a cube a truncated cube having fourteen equilateral faces, six octagons
and eight triangles.

VI. To construct in a dodecahedron a truncated dodecahedron with thirty-two equilateral

faces, twelve decagons and twenty triangles.

He begins with the three Platonic polyhedra having triangular faces — tetrahe-
dron, octahedron, icosahedron — creating a regular hexagon in each face and forming,
through the removal of each vertex, a new triangular face similar to the original face
but whose side is one third that of the face. Thus the edges of the newly formed face
are one third that of the original polyhedron. He then extends the technique to the
remaining two Platonic solids that do not have triangular faces. He first forms an
equilateral and equiangular octagon in each square face of the cube. This octagon
within the square, too, may be readily constructed using tangents (shown in the
diagram below as dashed lines) to a circle inscribed in the square (Elements IV, 8).

In this proposition, however, the side of the octagon is not one third of the edge of
the regular cube. If we assign a length 1 to each of AF and AK, the sides bounding

right angle AKF in triangle AKF, clearly hypotenuse F'K (a side of the equilateral
and equiangular octagon being constructed) will be /2 AF (Elements 1,47). A

21 thank one of my anonymous reviewers for pointing out this relationship.
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similar construction, inscribing a circle within a pentagon (FElements IV, 13) and
erecting tangents at the points where the circle intersects the bisectors of the angles
of the pentagon, could be used to produce a decagon in each pentagonal face of the
dodecagon.

Propositions VII with an explanation of a different technique for dividing the
regular polygons forming the faces of the octahedron.

VII. To construct in an octahedron a cuboctahedron with fourteen equilateral faces,

eight triangles and six squares.

One bisects each side of the polygonal face and joins each midpoint to the midpoints

of the adjacent sides. In this way, a polygon similar to the original polygon but with

a side just one half that of the original polygon is formed. To create the new

semiregular polyhedron, we need to join the vertices of these smaller polygons.
The next propositions extend this technique to the other Platonic solids.

VIII. To construct in a cube the same cuboctahedron.

COROLLARY: The technique may be used to construct semiregular polyhedra in each
of the remaining regular polyhedra.

IX. The side (edge) of this cuboctahedron is the side of the hexagon occurring in the
great circle of the sphere in which this cuboctahedron occurs.

X. To construct in a dodecahedron an icosidodecahedron with thirty-two equilateral
faces, twenty triangles and twelve pentagons.

XI. To construct in an icosahedron the same icosidodecahedron.

COROLLARY: The side (edge) of the icosidodecahedron is the side of the decagon

occurring in the great circle of the sphere in which this icosidodecahedron occurs.

In this new series of polyhedra, the author omits the tetrahedron. He does not
state a reason for this omission, but we might speculate that it lies in the fact that
the new polyhedron produced from the tetrahedron in this series is not semiregular
but rather the regular octahedron. The inscription of a regular octahedron in a
tetrahedron was described in Book XV (proposition 2) appended to the Elements
already in late antiquity. Thus it is perhaps not surprising that it should be omitted
here.

The cube and octahedron are “dual” polyhedra, as are the dodecahedron and
the icosahedron. In each “dual”, the number of vertices of the first is equal to
the number of faces of the second, and vice versa. Thus, when we apply the new
technique to the cube and octahedron in propositions VII and VIII respectively,
we form in each case a semi-regular cuboctahedron made up of eight triangular
and six square faces. Similarly, when we apply the technique to the dodecahedron
and icosahedron in propositions X and XI respectively, we form in each case an
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icosidodecahedron having twenty triangular faces and twelve pentagonal faces.

Proposition IX gives the value of the side of the cuboctahedron formed: it is the
side of a regular hexagon inscribed in the great circle of a sphere that circumscribes
the two polyhedra. This is equivalent to finding the equatorial polygon, the polygon
formed by the edges of the polyhedron when cut by the plane of a great circle of the
circumscribing sphere.' A porism at the end of proposition XI states that the side
(edge) of the icosidodecahedron is the side of a decagon inscribed in the great circle
of a sphere that circumscribes the two polyhedra. In other words, the equatorial
polygon of the icosidodecahedron is a decagon. The demonstration, if we wished to
follow it out, would parallel the argument given in proposition IX.

Another porism to proposition XI notes that if we cut the cuboctahedron and
the icosidodecahedron along their equatorial planes and then rotate one half of the
polyhedron relative to the other through a sixth or a tenth of a circle respectively,
we form two new semi-regular polyhedra now known as the triangular orthobicupola
(Johnson solid Ja7) and the pentagonal orthobirotunda (Johnson solid J34) respec-
tively.'* Another way to describe these polyhedra is that instead of having a triangle
opposite a square or a pentagon respectively along the equatorial plane, we now have
triangle opposite triangle, square opposite square, and pentagon opposite pentagon.
These two polyhedra are illustrated below, the triangular orthobicupola on the left
and the pentagonal orthobirotunda on the right. In each, the section of the equa-
torial plane in the visible part of the polyhedron is indicated with a dashed line.
Edges not visible to the observer are indicated by dotted lines.

This note seems to be the earliest recognition of these polyhedra as independent
entities.

The author then shows how each of the truncated polyhedra formed in this series
may be inscribed in a sphere.

XII. To construct a truncated tetrahedron, half of whose faces are hexagons and half are

triangles, in a given sphere.

3The various features of these equatorial polygons are explored by Coxeter [1973, 18-19].
“Diagrams based on illustrations from http://en.wikipedia.org/wiki/Triangular_orthobicupola and

http://en.wikipedia.org/wiki/Pentagonal _orthobirotunda.
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The procedure is worked out in detail for the truncated tetrahedron. One begins
by inscribing the regular tetrahedron in a sphere. This inscription procedure is
assumed in Book X VI, but a technique was given already in Elements XIII, 13-17 and
an alternative procedure using analysis and synthesis was developed in late antiquity
by Pappus, Collectionis, problems 54-58.1> With the regular polyhedron inscribed
in the sphere, we construct within it the truncated tetrahedron as in proposition
IT. After connecting each vertex of the truncated tetrahedron with the center of
the circumscribing sphere, we extend these lines until they reach the surface of the
sphere itself. We connect these points on the sphere to produce the edges of a new
and somewhat larger truncated tetrahedron that is now circumscribed by the given
sphere. The author notes that we may do the same for any of the other semi-regular
polyhedra constructed in the previous propositions.

Next come several rather elementary lemmas leading up to the construction of
two new classes of semiregular polyhedra in propositions XVIII and XIX.

XIII. Given two intersecting planes, there being extended in each plane a perpendicular
falling on a single point on their common section, if two other perpendiculars in those
planes fall on another point in the common section, the angles between the second pair
of perpendiculars will be equal to the angles between the first pair.

XIV. If two lines be perpendiculars falling on another line and the three be in a single
plane, and there be extended from the meeting of the two perpendiculars and the line
two other perpendiculars to that line in the elevation of the plane such that they bound,
together with each of the first perpendiculars, two angles equal to one another, then
they (the second pair of perpendiculars) are in the same plane.

XV. The ratio of the diameter of the circle to the side of the equilateral polygon occurring
in it is as the ratio of the diameter of any circle to the side of a similar polygon occurring
in that circle.

XVI. If there be two lines according to the ratio of the diameter of a circle and the side
of the equilateral polygon occurring in it, the shorter line is the side of that polygon
occurring within the circle of which the longer line is the diameter.

XVII. To construct in a circle a quadrilateral similar to a rectangular parallelogram.

The author concludes his discussion with the construction of two new semiregular
polyhedra which do not depend on the regular Archimedean solids.

XVIII. To construct in a sphere a semiregular polyhedron having equilateral faces, two
of which are a specified polygon occurring within parallel and equal circles and the

remainder are squares.

Y5For the Greek text of Pappus see Hultsch [1876-1878, T11, 142-162]. For a summary of the technique
used by Pappus, see the notes to Elements XIII, 13-17 in Heath [1956].
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XIX. To construct in a sphere a semiregular polyhedron having equilateral faces, two
of which are a specified polygon occurring within parallel and equal circles and the

remainder are equilateral triangles.

What is being constructed in proposition XVIII is a polyhedral prism, inscribed in
a sphere. To accomplish this task, we inscribe in two equal and parallel circles cutting
a sphere, one on either side of a great circle, the same regular polygon, positioned
so that the vertices of one are directly opposite the vertices of the other. Then we
connect each vertex with its corresponding vertex to form a series of squares. The
result is a semiregular prism. The specific example worked out in this proposition is
a decagonal prism, but a porism at the end of the proposition notes that there are an
infinite number of such polyhedral prisms that can be formed using this technique.

In proposition XIX we form a polyhedral antiprism in a sphere. The procedure
is in many ways analogous to that of the previous proposition. We begin with two
equal and parallel circles cutting the sphere, one on either side of a great circle, and
inscribe the same polygon in each of the two circles. The essential difference between
the prism and the antiprism is that in the latter we align the vertices of one polygon
so that each is directly opposite the midpoint of the arc subtended by the side of
the polygon in the opposite circle. We then connect the vertices together to form
equilateral triangles, rather than squares as in the case of the prism. This proposition
works out the specific case of a square antiprism, but, like the previous proposition,
it is followed by a porism noting that the number of polyhedral antiprisms that can
be formed using this technique is infinite.

VII Discussions of Regular and Semiregular Polyhedra
Before Book XVII

Regular polyhedra, that is, convex polyhedra each of whose faces is a similar equilat-
eral and equiangular polygon and each of whose angles is congruent, have long been
known. Both Heath [1981, I, 158-162] and Vitrac [1990-2001, IV, 95-106] discuss the
limited, fragmentary, and ultimately inconclusive literary evidence, mainly a state-
ment of Proclus, that these polyhedra were discovered by the ancient Pythagoreans.
Sachs [1917] has argued forcefully that this attribution to the Pythagorean tradition
is not credible. Thus the early history of the Platonic solids rests almost completely
on the famous scholion to book XIII, where the cube, pyramid and dodecahedron
are attributed to Pythagoras but the octahedron and icosahedron are ascribed to
Theaetetus. Waterhouse [1972-1973] argues that the seeming improbability of the
attribution to someone as late as Theaetetus is understandable if we remember that
one cannot recognize the existence of “regular solids” until one has developed an
abstract definition that will set these solids apart from all others — a definition that
he argues developed within Plato’s academy. Thus he concludes that the scholion
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is likely to represent a valid historical fact. These solids are often called “Platonic”
solids, although their connection to Plato is somewhat tenuous, deriving mainly
from his association of each of them to one of the four elements (the dodecahedron
was used for the universe itself) in Timaeus, 55C - 56B [Heath 1981, I, 294-295].
Tradition has sometimes pointed to Theaetetus as the first to develop the geomet-
rical understanding of the regular polyhedra [Heath 1981, I, 212; Vitrac, 1990-2001,
IV, 98]. The geometrical construction of these polyhedra, and the proof that there
could be only five of them, which is systematically developed in propositions 13-18
of Elements XIII, are believed to rest on the theoretical work of Theaetetus.

Semiregular polyhedra, those convex polyhedra bounded by equilateral and
equiangular but not similar polygons whose edges are all equal and such that any
polygon of one type is completely surrounded by polygons of the second type, also
have a long history. Archimedes undertook a systematic discussion of thirteen dif-
ferent types of these polyhedra. This work is not extant, but Pappus included a
summary of these results in his Collectiones.'® Pappus has arranged his report of
Archimedes results in terms of increasing number of sides of the semi-regular poly-
hedra. To what extent his treatise matches Archimedes original discussion of these
polyhedra we do not know. The work of Pappus does not seem to have been directly
known in Arabic, although there remains the possibility that it entered the Arabic
tradition indirectly through some secondary source.

Archimedes work is also described very briefly in a note in Heron’s Defini-
tiones. The Greek text, however, has become corrupt. According to Heron’s report,
Archimedes credited Plato with knowledge of at least one semi-regular fourteen-
sided polyhedron. One was clearly the cuboctahedron, but the other cannot now
be identified because the Greek text contains an error in its description of the poly-
hedron [Heath 1981, I, 295]. Waterhouse [1972-1973, 219-221] employing a careful
textual analysis, argues that the basic information included in Heron’s report —
that Plato knew the “tesserakaidecaedron” (the cuboctahedron) is probably reli-
able. Why did Plato then not develop other Archimedean solids which are similarly
formed by truncating or cutting off the corners of other regular solids? Waterhouse
[1972-1973] suggests that this “tesserakaidecaedron” might have been introduced as
a “counter-example” to the “Platonic solids”. This “counter-example” adds credence
to the suggestion that the abstract concept of regular solid figures was developed
within the Academy.

There were discussions of regular polyhedra quite early in the Arabic tradition.

SHeath [1981, TI, 98-101] provides a brief English summary. The original Greek of Pappus can be
found in Hultsch [1876-1878, I, 352,354]. A transcript of Pappus’s Greek text, with English trans-
lation, can be found in Thomson [1941, II, 195-197]. Both the Greek text and English translation,
along with small perspective drawings of the Archimedean solids, are available on the internet at

http://www.cs.drexel.edu/ crorres/Archimedes/Solids/Pappus.html.
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Thabit ibn Qurra (221 AH/AD 836 — 288 AH/AD 901), for example, is credited with
a treatise discussing the comparison of the sides of the five regular polyhedra (FEle-
ments XIII, 18 in Heiberg’s Greek edition and XIII, 21 in the Arabic transmission).!”
He is also credited with a treatise discussing the construction of a fourteen-sided solid
— presumably a discussion of the cuboctahedron and its salient features.'® Thus it
would appear that some knowledge of Archimedean solids had infiltrated the Arab
world although the precise pathway is still impossible to delineate.

Abu’l-Wafa’ al-Buzjani, an Arab mathematician of the 4th/9th century, has
discussed some examples of construction of regular and semiregular polyhedra in
the twelfth chapter of his treatise Kitab fima yahtagu ilaihi s-sani¢ min a‘mal al-
handasa.'® His approach to the problem is quite different from that of Pappus,
since he is interested primarily in construction techniques. His formulation is typ-
ically in terms of dividing the surface of a sphere into equilateral and equiangular
triangles, quadrilaterals, pentagons. Despite this formulation, however, the diagrams
represent various semi-regular polyhedral figures. I show two examples below: the
truncated icosahedron (left) and the cuboctahedron (right).2® The dashed lines in
the diagrams represent edges not visible to the observer and the dotted lines in the
diagram of the cuboctahedron represent lines incorrectly included in the diagram by
the copyist.

17Sezgin [1974, 271-272] notes the existence of a manuscript of this treatise in Cairo. T have been
unable to confirm this information.

8The Arabic title is “Maqala fi “amal sakl mugassam di arba “asra ga‘ida tuhitu bihi kura ma‘lima.”
[Bessel-Hagen and Spies 1932] have published the text and a German translation. Aghaniya
Chavoshi [2007] has published a French translation. I have not been able to see these works.
19There exists at least one Arabic manuscript that may be complete, but the Milan Arabic fragment
studied by Suter [1922] is incomplete and does not include the discussion of the polyhedra. Chapter
XII of the Persian summary studied by Woepcke [1855] is at present the best source of information
available. A Persian translation of the Arabic text appears to exist in manuscript form. Presumably
it is this Persian rendition which, with the title Abu al-Wafd al-Buzjani, Ketabé Nejarat: Edition
d’une version persane ancienne avec traduction francaise et commentaires, is now in final prepara-
tion by Aghayani Chavoshi. Professor Aghayani Chavosi has very kindly provided me a pre-print
of his French translation of chapter 11 of this treatise. A detailed comparison of these two Persian
versions must await a future study. Sezgin [1974, 324] indicates that there was at least one extant
commentary composed in Arabic. It’s precise relation to these Arabic and Persian versions is yet
to be determined.

29Diagrams based on BNF, Persan 169, fol. 178a and BNF Persan 169, fol. 177b respectively. A
comparison with the same diagrams from Book XVI, propositions IV and VIII respectively shows

that the copyist of Persan 169 had considerably better control over perspective drawing.
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The twenty one propositions of book XII of the A ‘mal al-handasa of Abw’l-Wafa’,
as recorded by Woepcke [1855, 352-358], are as follows:?!

1. To trace out a great circle on a sphere.

2. To trace out two great circles on a sphere at right angles to one another.

3. To trace out three great circles on a sphere such that each cuts the others at
right angles.??

W

. To construct a great circle passing through two specified points.

5. To divide the surface of a sphere into four equilateral and equiangular triangles
[equivalent to constructing a circumscribed regular tetrahedron|. We construct
three great circles at right angles to one another on the sphere. This forms
eight triangles on the surface of the given sphere. One chooses any one of
these triangles. Then there are three triangles that lie opposite the vertices
of the chosen triangle. Joining the center points of these four triangles along
great circles, one divides the surface of the given sphere into the desired four
triangles.?3

6. An alternate procedure for dividing a sphere into four equilateral and equian-

gular triangles. Set out line AB equal to the diameter of the sphere. Mark off

AC equal to 1/3 AB. Erect at C a perpendicular meeting at D the semicircle

drawn on AB as diameter. Placing one foot of a compass at a chosen point

(as pole) of the sphere and with the compass opening equal to distance DB,

draw a circle. Divide the smaller circle into three equal parts. These three

points plus the pole point are the four points needed to divide the surface of

21'Woepcke did not translate the entire treatise, but only the enunciations of the propositions. When
there are alternative constructions, he supplies a summary of each technique. His study also does
not include the diagrams that accompany these propositions.

22The octahedron is not specifically mentioned by Ab@’l-Wafa> in this chapter. Woepcke [1855, 352
note 1] notes that the polyhedron is implicit in this construction, since the intersections of great
circles in this proposition define the vertices of the octahedron.

231t is clear that if we now draw planes through each set of three points, we will construct a regular

tetrahedron inscribed in the sphere. Abu-1-Wafa’> does not explicitly take this step, however.
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the sphere into four equal parts.??

7. To divide the surface of a sphere into six equilateral and equiangular quadri-
laterals [equivalent to constructing a circumscribed cube]. We join the centers
of the eight triangles formed in proposition 5 along great circle arcs.

8. An alternate procedure for dividing a sphere into six equilateral and equiangu-
lar quadrilaterals.?®

9. To divide the surface of a sphere into twenty equilateral and equiangular tri-
angles [equivalent to constructing a circumscribed regular icosahedron|. We
trace a great circle on the sphere and choose two points, E, Z to be the poles.
We divide the circle into ten equal parts, AB, BC,CD etc. With the compass
opening equal to one of these parts, and taking A, B as centers, we draw two
small circles cutting one another on the side toward pole E at X; taking B, C
as centers and drawing two small circles cutting one another on the side toward
pole Z at K. We do the same process going all around the great circle. When
we finish, we will have five points X and five points K. These, together with
the two poles will be twelve points which, when joined along the arcs of great
circles, will divide the sphere into twenty triangles.

10. An alternative procedure for dividing a sphere into twenty equilateral and
equiangular triangles.?6

11. To divide the surface of a sphere into twelve equilateral and equiangular pen-
tagons [equivalent to constructing a circumscribed regular dodecahedron|. The
procedure is to divide the surface of the sphere into twenty triangles as in propo-
sition 9. We join the centers of these triangles along arcs of great circles and
in so doing we divide the surface as required.

12. An alternative procedure for dividing a sphere into twelve equilateral and
equiangular pentagons. We set out line AB, the diameter of the sphere, and
divide AB into three equal parts, AC,CD, DB. At B we erect a perpendicular
meeting at E the semicircle drawn around D as center with radius DA. We
extend AB in the direction of B to H such that BH is half of BE. We mark
off from H A the distance HT equal to HE. Then BT will be the chord corre-
sponding to the side of the spherical pentagon needed to divide the surface of
the sphere. Now we take point I at random on the surface of the sphere. We
describe about it a small circle with the opening of the compass set equal to BT
and divide this circle into three equal parts at K, L, M. With these points as
centers and with the same compass opening, we describe circles which we also
divide into three equal parts in the same way. We choose in each circle a point
T for one of the three points of division. In the end, we obtain twenty points 1

24The procedure outlined is essentially that used in Elements XIII,13.
25The procedure is essentially that used by Euclid in Elements XIII, 14.

26The procedure here is essentially the same as Euclid’s in Elements XIII, 16
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13.

14.

15.

16.

17.

18.

19.

which, when joined along great circle arcs, divide the sphere as required.

An alternative procedure for dividing the surface of a sphere into twenty equi-
lateral and equiangular triangles [equivalent to construcing a circumscribed
regular icosihedron]. We presume the construction in proposition 11. We join
the midpoints of the pentagons formed there along the arcs of great circles.
The result is the desired solution.

To divide the surface of a sphere into fourteen parts, of which six are quadrilat-
erals and eight are triangles [equivalent to constructing a circumscribed cuboc-
tahedron|. We construct three great circles on the sphere, each at right angles
to the other, thus forming eight triangles. We take the midpoints of the sides
of these triangles and join them along the arcs of great circles. We obtain then
eight triangles placed respectively in the middle of each original triangle and
six quadrilaterals at the points of intersection of the great circles, the vertices
of the eight original triangles.

An alternative procedure for dividing the surface of a sphere into fourteen parts,
six quadrilaterals and eight triangles . We trace on the sphere six quadrilaterals
as in proposition 7. We take the midpoints of the sides and join these points
along arcs of a great circle. We obtains then six quadrilaterals situated in the
middle of the original quadrilateral faces and eight triangles which are situated
at the vertices of the original quadrilaterals.

To trace on a sphere twelve pentagons and twenty triangles [equivalent to
constructing a circumscribed icosidodecahedron]. We divide the sphere into
twenty triangles as in proposition 9.27 We take the midpoints of their sides
and join these points along the arcs of great circles.

To trace on a sphere twelve pentagons and twenty hexagons [equivalent to
constructing a circumscribed truncated icosahedron]. We divide the sphere
into twenty triangles as in proposition 9 and divide the sides of each triangle
into thirds. We connect these divisions along arcs of great circles such that
in each original triangle there is a hexagon and at the vertex of each original
triangle there are placed five small triangles forming a pentagon.

An alternate procedure for dividing the surface of a sphere into twelve equi-
lateral and equiangular pentagons [equivalent to constructing a circumscribed
regular dodecahedron]. We divide the sphere into twelve pentagons and twenty
triangles as in proposition 16. Then we join the centers of the triangles along
arcs of great circles.?®

An alternate procedure for tracing on a sphere twelve pentagons and twenty
hexagons [equivalent to constructing a circumscribed truncated dodecahedron].

2"We begin with an icosahedron.

28In this construction, we begin with an icosidodecahedron. This technique for creating a regular

dodecahedron is not mentioned in Book XVI.
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We divide the sphere into twelve pentagons as in proposition 11. Then we join
the midpoints of their sides along the arcs of great circles.

20. To divide a sphere into six quadrilaterals and eight hexagons [equivalent to
constructing a circumscribed truncated octahedron]. We divide the sphere
into eight triangles by intersecting three great circles at right angles to one
another. We divide the sides of the each triangle into three equal parts and
join these divisions along the arcs of great circles. We obtain eight hexagons
in each of the original triangles and six quadrilaterals situated at the vertices
of the triangles or the points of intersection of the three great circles.

21. To divide the surface of a sphere into four triangles and four hexagons [equiv-
alent to constructing a circumscribed truncated tetrahedron]. We divide the
sphere into four triangles as in proposition 5 and divide the sides of each trian-
gle into three equal portions. We connect the points of division along the arcs
of great circles. We obtain in the center of each original triangle a hexagon
and four triangles situated at the vertices of the original triangles.

The careful reader will notice immediately a number of important points of dif-
ference between the discussion of Abu’-l-Wafa’ and that presented in Book XVI.
One of the most obvious has already been mentioned — the fact that Abu’-1-Wafa’ is
constructing his figures by dividing the surface of a sphere. Further comparison will
show that the two treatises discuss the truncated polyhedra in different order. Abuw’-
l-Wafa> has arranged them in order of increasing number of faces, while Book XVI
has placed them so that we deal with triangular faces (tetrahedron, octahedron,
icosahedron), square faces (cube) and pentagonal faces (dodecahedron). Further-
more, Book XVI carries the discussion further than does Abw’-1-Wafa’, mentioning
both the triangular and pentagonal orthobirotunda and giving the construction of
the semiregular prism and antiprism in full. Another remarkable difference is that
Abw-1-Wafa> describes the derivation of the regular dodecahedron from an icosido-
decahedron. This procedure is not found in Book XVI. These many differences need
not mean that the two works were completely independent of one another, of course.
The author of Book XVI may well have known the earlier work of Abu>-1-Wafa’. But
the differences do suggest that if the author of Book XVI knew and used the work of
Abw-1-Wafa’, he was not just repeating but was reworking and extending the earlier

discussion.??

29Because of the similarity of subject matter between these two treatises, one of my referees ques-
tioned whether Abu’-1-Wafa’ might be the author of Book XVI. This possibility seems unlikely to
me, given the many differences in style and approach between the two treatises. A more definitive

answer must await further study of the original treatise of Abu’-1-Wafa’.
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VIII Later Discussions of Archimedean Polyhedra

Book X VI is certainly not the only attempt to add to or extend the FElements during
the medieval period. There are at least two other important medieval extensions of
the discussion of regular polyhedra. One is the extensive re-writing of book XV in
the Arabic redaction of the Elements by Muhy1 al-Din al-Maghribi (d. 682 AH / AD
1283). It includes theorems comparing the sides, faces, surface areas, and volumes
of the five regular polyhedra.?® The Latin version of Euclid by Campanus of Novara
(mid-13th century) was probably the most important edition of Euclid circulating
in manuscript form. It incorporates additional propositions in both book XIV and
book XV in which he works out additional relationships among the regular polyhedra
[Busard 2005, 607-610]. Although Campanus frequently borrowed material from
other mathematicians,[Busard 2005, 32-38] these added propositions have not yet
been traced to earlier sources and so may represent his own emendation of the text.

The influential Latin edition of the Elements by Christoph Clavius (1538-1612)
also included a section labeled “Book XVI”, which Clavius borrowed, with attri-
bution, from Francisco Flussate Candalla (15027-15947). It is entitled “In which
it is explained how various of the regular solids may be mutually inscribed and a
comparison of their sides.”3! This “Book XVI” occupies pages 610-637 of Clavius’s
1612 edition of his commentary on Euclid.

Candalla’s Book XVI was divided into three chapters:

1. Relations of the sides and diameters of regular polyhedra to one another and
comparison of the volumes of regular polyhedra

2. Inscribing each of the five regular polyhedra within a sphere, using the tech-
niques of Pappus

3. On the comparison of the five regular polyhedra in terms of volumes and angles

Clavius’s treatment of polyhedra is not identical with the Arabic material de-
veloped by al-Maghrib1 or with the Arabic Book XVI presented here. The section
describing the techniques of Pappus for inscribing each of the regular polyhedra in
a sphere certainly derives in some measure from the Archimedean tradition. But
the development of semi-regular solids is outside the scope of this Latin Book XVI.
Thus, although they share the same title, the two works are quite different and

30This discussion of the regular polyhedra has been edited and translated by Hogendijk [1993].

31 “Elementum sextumdecimum. Quo varize solidorum regularium sibi mutuo inscriptorum, & lat-
erum eorundem comparationes explicantur, a Francisco Flussate Candalla adiectum, & de quinque
corporibus.” The author is Frangois de Foix, Compte de Candalle. His “Book XVI” was appended
to his edition of the Elements (Paris: Jean Le Royer, 1566), which was re-edited in 1578 and 1602.
[Heath 1956, I, 104].
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appear unrelated to one another except for the fact that each uses some portion
of the Archimedean discussion of polyhedra. Each of these treatises, in extending
the propositions of the Book XV traditionally appended to Euclid’s text, produced
different propositions and used different approaches to the problems they set out to
address. Although independent of one other, when taken together, they show some-
thing of the diversity and fecundity of the Euclidean tradition during the medieval
period.

Clavius’s work was especially important because of its wide influence. The first
full English translation of the Elements, by Henry Billingsley (London, 1570), was
based on Clavius [Archibald 1950]. Although I have not been able to see a copy
of this translation, it appears that, at least initially, it contained also Clavius’s
appended Book XVI [Xu 2005, 16]. Clavius’s Book XVI was also incorporated into
the English translation of Isaac Barrow (London, 1660), beginning with the 1714
edition [Xu 2005, 11]. Although the Billingsley translation served as the basis for
the first Chinese translation of books VII-XV, it appears that the appendix on
the Archimedean solids was not rendered into Chinese by Alexander Wylie and Li
Shanlan. Whether this omission was because the appended material was removed
from later editions of Billingsley or whether Wylie and Li Shanlan simply decided not
to translate it is not yet clear to me. By the mid-nineteenth century, presumably,
anyone with some experience in the Western mathematical tradition would have
realized that Candalla’s work was both limited and outdated.

By the time the appendix of Candalla was incorporated into Barrow’s edition of
the Elements, it had already been superseded by the systematic study of regular and
semiregular solids carried out by Johannes Kepler. As a young man, Kepler had hap-
pened, by accident, to notice that the circles representing the orbits of Saturn and
Jupiter were related to one another through a quasi-triangular construction. This
observation set him on a Pythagorean quest for relations between the orbital circles
of the other planets and the plane geometric figures. Eventually he derived a cosmo-
logical system which one of the five Platonic solids was placed between each pair of
the spheres of the six Copernican planets. His efforts led to publication of Mysterium
Cosmographicum (1596), including one of the most evocative images of Renaissance
cosmography showing the universe as a great goblet within which the planetary
spheres are interspersed with and separated by the five Platonic solids [Koyré 1973,
146]. In his last major publication, Harmonice Mundi, Kepler [1619] developed a
systematic study of convex polyhedra and extended the study considerably beyond
the limits known up to that time. It is his nomenclature and classification system
that continues to be used today in many discussions of polyhedra.
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Conclusion

On one level, Book XVI offers an insight into one of the less studied currents of
mathematical scholarship in the early medieval Islamic tradition. In it we see what
seems to be the earliest recognition of some classes of Archimedean solids such as
the bicupola, the birotunda, and the antiprisms. On another level, this study of
the anonymous Book XVI leaves, perhaps, more questions than answers. We do not
know the name of the author of the Book XVI material, nor can we be sure of the
identity of the editor who added it to the Tahrir with the intention of somehow
completing Fuclid’s treatise. While it seems in some ways to complement parts of
Euclid’s discussion, it has also several important disjunctions as well. In fact, the
addition of Book X VI often seems more like a kind of intellectual xenograft, joining
a discussion of Archimedean solids with a Euclidean treatise. How the editor might
have resolved these tensions within his own intellectual tradition is still a mystery.
At the very least, the existence of Book XVI reveals another facet of the remarkable
fecundity of the mathematical tradition of medieval Islam.

Appendix: Translation and Commentary

The Arabic text is unique, so far as we know. Thus there is no possibility of es-
tablishing a textual history or stemma. My editing has been limited, then, to re-
constructions of portions of the text damaged by crumbling margins and providing
tentative correction of a few copyist errors. I have expanded the abbreviations used
by the copyist and standardized some of the spelling. The Arabic text, as is usually
the case, contains no punctuation nor paragraphing. All punctuation and para-
graphing in the edition are my own, introduced in order to clarify the flow of ideas
within the text. The punctuation and paragraphing used in the English translation
generally parallels that of the Arabic edition.

When translating, I have endeavored to follow as literally as possible to the
Arabic text. Sometimes this policy would lead to a translation that is too concise
to be clear. In these cases, I have added words or phrases to the translation in
order to produce a meaningful statement in English. These words are enclosed in
pointed brackets <>. Sometimes the medieval Arabic technical terminology does
not correspond exactly to current mathematical usage. I have then adopted the
more modern terminology in my translation, and explain the original meaning of
the Arabic terms in the commentary notes to the propositions. Occasionally, I have
also found it necessary to add to the translation an explanatory term to clarify
those places where the Arabic grammar, because it differs from English, leaves the
translation vague or unclear. These explanations are enclosed in parentheses ( ).
The text has been damaged at several points. In most cases, it is only a few letters
at the end of the line that are missing and the words can be reconstructed with
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little doubt. I have indicated my reconstructions by enclosing the words in square
brackets | | without distinguishing whether all or only part of the word is missing.

The geometrical data contained within the diagrams that accompany the text
has been extracted and preserved using DRaFT, a software tool developed under
the leadership of Professor Ken Saito (Osaka Prefecture University).32 The software
allows us to capture the salient geometrical data from the original diagram and use
it to create a permanent record. Using this data, we are able to reconstitute the
essential features of the original diagrams for each proposition (although sometimes
on a smaller scale). A number of the manuscript diagrams have been damaged.
I indicate the ragged edge of the damage using dotted lines. In some cases, it is
feasible to reconstruct parts of the diagram based on symmetry arguments and the
surviving portions of the diagram. I indicate such reconstructed portions using
a dashed line. Some cannot be reconstructed based on the surviving portions of
the diagram and so are left incomplete. In the manuscript, the diagrams typically
come near the end of the proposition. I have opted for the more modern placement
after the enunciation of the problem or proposition. These medieval diagrams are
often difficult for readers unaccustomed to a lack of perspective to visualize readily.
Therefore, in the notes to each proposition I have redrawn its diagram using more
modern perspective techniques.

Each proposition is followed by commentary and notes. General comments dis-
cussing the proposition as a whole are placed first. Specific comments referring to
individual statements within the translated text are referenced within the text by a
numeral in parentheses. This numeral corresponds to the numbered note at the end
of the proposition.

32The software and accompanying tools are available gratis. They may be downloaded from Pro-
fessor Saito’s website (http://www.greekmath.org/diagram/). For additional description of the
software and its potential application, see Saito [2006, 92-94] and De Young [2008b)].
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BOOK XVI

It is that which I have appended to the treatise. Through my talent it was derived
and it has continued up to nineteen propositions.

Proposition 1

We want to draw an equiangular and equilateral hexagon in a triangle likewise (that
is, having similar characteristics), for example in triangle ABG.

Let us find the center of the triangle, namely D (1) and extend perpendiculars
from it to the sides of the triangle. (2) They are equal to one another and bisect the
sides of the triangle.

We connect lines AD, BD,GD and mark off DE, DZ, DH equal to the perpen-
diculars. We extend from points F, Z, H perpendiculars to the lines (AD, BD,GD)
which <perpendiculars> we extend on both sides to <meet> the sides of the triangle
(3). B B -

It is not possible that point T fall [on] (4) point S nor below it, since SD, DE are
equal to one another and angle F is right.(5) Then the circumference (or boundary)
of hexagon TK M NSO is produced.(6) And let us connect line T'D.

We say that angles ABD, BAD are equal to one another on account of the equal-
ity of sides DB, DA to one another.(7)

But angles, Z, E in triangle BZO, TEA are right and lines BZ, EA are equal to
one another. Thus lines BO,TA are equal to one another. There remain OS,ST

<which are> equal to one another. (8)
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And on account of angles S, F in triangles TSD,TED being right and sides,
SD, DE <being> equal to one another, if we remove the squares on SD, DE from
the square on T'D, there remain the squares on ST, TE, <which are> equal to one
another. Thus lines ST, TE are equal to one another (9).

<And> on account of the equality of the sides of triangles ABD, ADG, the angles
at A are equal to one another. The angles at E in triangles ATE, AEK being right
and the side AE being shared, sides TE, EK are equal to one another.

But it was established that OS, ST are equal to one another and ST, TE are equal
to one another. Thus, the whole of OT, TK are equal to one another.

In the same way, it may be shown that all of sides of the hexagon are equal to
one another.

But because angles BOZ, ATE, AKFE in triangles BOZ, ATE, AKE are equal
to one another, angles SOT,OT K, TKM are equal to one another. (10)

In the same way, it may be shown that all the angles of the hexagon are equal to

one another.

That is what we wanted.

It is possible, on the example of this construction, to draw an octagon in a square
and a decagon in a pentagon. (11)

Commentary and Notes

In my reconstruction of the diagram using more modern projection,’® I have out-
lined the face of the constructed hexagon in dashed lines. As remarked earlier, the
described technique is equivalent to inscribing a circle within the equilateral triangle
ABG and drawing a tangent line perpendicular to the angle bisector at the point
where each angle bisector crosses the circle and extending in either direction to meet
the sides of triangle. In this reconstructed diagram, I have indicated the inscribed
circle using a dotted line. There is no circle in the original diagram.

5°Based on a diagram from:

http://www.geocities.com/apollonius_theocritos/Pythagoras_files/ Tetraktys.gif.
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This technique is used in creating truncated versions of each of the regular (Pla-

tonic) polyhedra inscribed within a regular polyhedron of the same class (that is,

truncated tetrahedron within regular tetrahedron, etc.) in the next five propositions.

. The center is where the bisectors of the three sides meet. This definition is not

directly given in the FElements. See also Plato, Timaeus, 54, D and E and the
discussion of this passage by Heath [1956, II, 97-99] in his notes to proposition
IV, 10. Of course, since we are given that the triangle is equilateral, the angle
bisectors and side bisectors are the same.

. The perpendiculars constructed from this center are not identified explicitly,

although used later in the demonstration. From the diagram, we know that
they are DL, DW, DS.

. These constructed perpendiculars are also not identified at this point. The

diagram shows that they constitute lines TEK, MHN,SZO.

This word has been lost due to damage. Only the initial stroke survives but
it is not clear what letter was intended. Since it is contrasted with the term
“below”, one would expect either “on” or “above”. The argument, however,
seems to require us to read it as “on”, rather than “above”.

. Since T is the point where the perpendicular from E meets side AB, it may

fall on point S (the midpoint) or above it (on the side toward A or below it (on
the side toward B. Because E was constructed between D and A, though, the
perpendicular can only meet AB between S and A. The argument is highly
compressed. Assume T does fall on S. Then, in triangle ET(S)D, angle E
is right, since ET is perpendicular to DA. Since SD and DE are equal by
construction, angle D must also be right. But this is impossible because a
triangle cannot contain two right angles. Next, assume that T falls beyond S
toward B — for example at point O. Now angle ATE in triangle ATE is acute
because angle AET is right. Thus angle ETB is obtuse. Then in triangle

ET(0)D, angle DET is right and the angle at T is obtuse, which is impossible
in a right triangle.

. It seems clear that we are intended to make the same kind of argument in

relation to points K, M, N, S, O.

Because DS is perpendicular to AB and S bisects AB, we have in triangles
ADS, DSB right angles at S, sides AS = SB and DS = DS. Therefore
AD = DB.

. They are equal to one another because S bisects side AB. If equals be sub-

tracted from equals, the remainders are equal.

. Elements 1,47.
10.
11.

Elements 1,13.
A marginal gloss states: It is possible to draw an equilateral hexagon in <an
equilateral> triangle by dividing into thirds the sides of the triangle and con-
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necting the lines so that there is formed at the side of each angle of the triangle
an equilateral triangle. He only employed the mentioned technique in order to
generalize to the construction of an octagon in a square and the construction
of a decagon in a pentagon, or rather a general construction for any equilateral
and equiangular polygon in each equiangular and equilateral polygon falling
in a circle, the number of its (the circumscribing polygon) sides being half the
number of its (the inscribed polygon) sides.

Proposition II

We want to draw, in a tetrahedron (1) having equilateral faces, a polyhedron (2)
having eight equilateral faces — four hexagons and four triangles — and to show [that
it occurs] within a sphere and that its side (edge) is a third of the side (edge) of the
tetrahedron.

Let the tetrahedron be ABG, and [let us draw] in each of its faces an equilateral
and equiangular hexagon. Thus, [there are produced] four hexagons.

A

G

But because each of its four vertices (3) is [made up of] three planar angles, there
is produced at each vertex a triangle. (4) Thus, there are produced four triangles.

But because the vertices of the tetrahedron are tangent to the sphere in which
the tetrahedron occurs, their distances from the center of the sphere are equal to
one another. (5)

Now, if we connect lines between the vertices of the tetrahedron and the center,
there are produced triangles whose corresponding sides are equal to one another.
Thus, their corresponding angles are equal to one another.

And if we connect between the center <of the sphere> and the vertices of the
polyhedron, there are produced triangles whose sides are the lines connecting be-
tween the center of the sphere and the vertices of the tetrahedron and the lines
connecting between the center and the vertices of the polyhedron.
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But the lines connecting between the vertices of the tetrahedron and the vertices
of the polyhedron — I mean, the sides of the triangles remaining from the faces of
the tetrahedron after drawing the hexagons in them — being equal to one another,
(6) two sides and the angle between them in <each of> these triangles are equal to
one another. Thus the remaining sides in the triangles are equal to one another — I
mean the lines connecting between the center of the sphere (7) [and the vertices of
the polyhedron.

Let us construct a semi-circle whose center is on the line connecting the vertex
of the polyhedron and the center of the sphere] with a distance (or radius) of one
of the vertices of the eight-sided polyhedron <from the center> and we revolve it
<about the line>, it passes through all the vertices <of the polyhedron>. (8) Thus,
the polyhedron occurs inside a sphere.

Now, because two angles of <each of> the triangles remaining from the faces of
the tetrahedron after drawing the hexagon are equal to one another and the third
angle is an angle of the equilateral triangle — I mean, two thirds of a right angle
— each of them is two thirds of a right angle. Thus, their sides are equal to one
another.

Therefore, the side of the hexagon — I mean <the edge> of the face of the drawn
<polyhedron> — is a third of the side of the triangle — I mean, the face of the
tetrahedron.

That is what we wanted.

Commentary and Notes

As we can see in the diagram, this tetrahedron has four vertices and four faces,
but only one of the faces is labeled. This is a standard practice for the author of
these propositions. If asked the reason why, he would probably point out that each
face of a regular polyhedron is equivalent to every other face. For this reason, the
geometric operations are described only for one face. It is presumed that we will
complete exactly the same operations in each of the other faces.

In this proposition, we want to construct within a regular tetrahedron a truncated
tetrahedron. To do so, we follow the technique developed in proposition 1. We
construct in each face of the tetrahedron a hexagon. Then we remove each of the
vertices of the tetrahedron along a plane passing through the edges of the newly
formed hexagons that lie adjacent to each vertex. Because the solid angle at each
vertex was constructed from three planar angles, there remains an equilateral and
equiangular triangle face where each vertex once stood.

This diagram shows the tetrahedron in more modern perspective.’® The dashed
lines outline the hexagon in face ABG. The dotted lines indicate the position of

5 . .
56Diagram based on drawing from

http://www.synearth.net/afullerex%20Folder/tructetra9.9.JPG.
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the hidden edges of the tetrahedron and the planes of truncation for removal of the
vertices of the tetrahedron.

1. The traditional Arabic terminology does not correspond to modern mathe-
matical usage. The term makhrut used in this proposition literally means a
cone. In more contemporary terminology, we are here dealing with a regular
tetrahedron. I have used the latter term in my translation.

2. The generic term mugjassam (solid) is used in the Arabic Euclidean tradition
for any three-dimensional figure. I translate it in this treatise as polyhedron.

3. The author uses the term zawiya mujassama (solid angle) in this context.
I shall use the term vertex when the solid angle is actually a portion of a
polyhedron and not merely three non-coplanar lines.

4. These triangles are formed by the removal of the vertices of the tetrahedron
along a plane passing through the edges of the hexagons closest to the vertices.
These removed vertices are themselves regular tetrahedra, similar to the regular
tetrahedron with which we began the problem.

5. Elements XIII, 13.

6. Proposition I.

7. The text appears to be corrupt at this point. It appears that the copyist has
omitted a segment (a line?) of text. I have suggested a provisional reconstruc-
tion in square brackets.

8. Euclid also used the technique of rotating a semicircle in Elements XIII, 13,
but Euclid’s demonstration requires construction of a sphere equal to a given
sphere. Euclid then shows that the constructed sphere does indeed circumscribe
the tetrahedron. In the present proposition, however, the author shows, based
on equality of triangles, that the vertices of the newly formed polyhedron are
equidistant from the center of the sphere and hence touch the spherical surface.
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Proposition I11

We want to draw, in an octahedron, a polyhedron having fourteen equilateral faces,
eight [hexagons| and six squares, <and to show that the polyhedron occurs in a
sphere, and that the edge of the polyhedron is a third of the edge of the octahedron>.
(1) -

Let the octahedron be ABG.

G

We draw in [each] of its faces a hexagon, (2) so that there are produced eight
hexagons.

And there is produced, at each of its six vertices, a square (3) because if we
connect between the center of the sphere (4) and each of the vertices of the octa-
hedron there are produced equiangular triangles according to the regularity of the
characteristics <of the octahedron>. (5)

Then, if we extend perpendiculars from the vertices of the four-sided <figure>,
through whose interior this line passes, to this line there are produced four triangles,
<any> one of their sides being equal to another, namely the remainders from the
sides of the faces of the octahedron.

But the angles at the foot of the perpendiculars are right and the angles which
are at the vertex of the pyramid are equal to one another. (6) Thus the sides of the
triangles are equal to one another according to their mutual correspondence. Thus,
the <four> perpendiculars fall on the same point.

But the line connecting from the center of the sphere and the angle of the per-
pendicular to these lines <is> falling on their common section. Thus all of them
are in a single plane.

But because the triangles resulting from these perpendiculars and the sides of
the four-sided figure are equal to one another, the sides are <equal to one another>
according to their mutual correspondence. Thus their angles are equal to one another
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according to mutual correspondence.

But because each vertex of the four-sided <figure> is composed of two of them
(that is, two of the equal angles mentioned above), they are equal to one another.
Thus they are squares.

And on the example of what preceded, it may be shown that the polyhedron
occurs in (or is circumscribed by) a sphere, and <that> its side (edge) is a third of
the side (edge) of the octahedron.

That is what we wanted.

Commentary and Notes

In this proposition we construct a truncated octahedron within a regular octahedron.
To do so, we use the procedure developed in proposition I. We construct in each face
of the octahedron an equilateral and equiangular hexagon. We then remove the
vertices of the original octahedron along a plane passing through the sides of the
hexagons closest to each vertex. Because there are four sides bordering each vertex,
the face resulting from removal of the vertex is square.

This reconstructed diagram shows the figure in more modern perspective.’” I
have used dotted lines to indicate the removed vertices of the regular tetrahedron.
The dashed lines indicate edges not visible to the observer looking at this solid
figure. Following the convention of the author, I label only one face ABG. I have
also labeled the six vertices of the hexagon formed in face ABG with the numerals
1-6.

The diagram in the manuscript is incomplete, since squares have been drawn at
only three of the six vertices. Therefore, only one of the hexagons can be seen in its
entirety.

57~ .
5"Diagram based on a drawing from

http://www.ac-noumea.nc/maths/amc/polyhedr/polyh_draw_htm
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. The author / copyist omits the last part of the enunciation, although he makes

reference to it at the conclusion of the proposition. Perhaps this statement is
omitted because the author does not prove the relationships here but refers the
reader to the previous proposition.

Proposition I.

. These squares are produced from the removal of the vertices. Although he

calls these polygons “squares” (murabba‘at), the remainder of the proposition
proves that they are indeed true squares as defined by Euclid. Perhaps it is for
that reason that he refers to these polygons as “four-sided figures” (dhu arb‘a
adla®) during the remainder of the proposition.

. The intended point could be the center of either the sphere circumscribing the

given octahedron or the inscribed sphere (which circumscribes the truncated
octahedron) — the centers of both spheres will coincide.

. This is the only proposition in which the author explicitly appeals to “mutual

correspondence” (tanazur). Perhaps he wants to emphasize that whatever is
true for the angles and sides of one triangular face will be true of the angles
and sides of the other faces as well.

. The Arabic term is makhrut (literally, cone). The author earlier used this term

to denominate the tetrahedron. He now uses the same term for a pyramid, half
of the octahedron. Perhaps he wishes to emphasize that he uses the technique
employed in proposition II.

Proposition IV

We want to draw, in an icosahedron, a polyhedron of thirty-two equilateral faces,

twenty of them hexagons and twelve of them pentagons, <and to show that the

polyhedron occurs in a sphere and that its side is a third of the icosahedron> (1).

Let the visible [half] of the icosahedron be ABGDE. (2)

A
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We draw in [each face| of the icosahedron a hexagon. (3) Thus there are produced
twenty [hexagons| and there is produced at each vertex of the icosahedron a pentagon
because each of its vertices is composed of five planar <angles>.

And on the example of what preceded, it may be shown that a pentagon is
equiangular and that its sides are in the same plane (4) and that the polyhedron
occurs in a sphere and that its side (edge) is a third of the side (edge) of the
icosahedron. (5)

That is what we wanted.

Commentary and Notes

We are forming a truncated icosahedron inscribed within a regular icosahedron.
Following the technique used in the previous propositions, we construct in each
triangular face of the regular icosahedron an equilateral and equiangular hexagon.
The diagram in the manuscript has been constructed with a vertex first view. This
has the effect of skewing the perspective on the hexagonal face. In constructing
my perspective drawing, I have used a side first view in order to show the hexagon
as equilateral and equiangular.®® The vertices of one such hexagon are indicated
in the perspective drawing using numerals 1-6. We remove each vertex from the
regular icosahedron along a plane passing through the the sides of the hexagons
that lie closest to each vertex. Each newly formed face will then be a regular
pentagon because each vertex is a solid angle made up of five planar angles. One
of these pentagonal faces is indicated in the perspective drawing using dotted lines.
The dashed lines indicate edges invisible to the observer in the chosen perspective.
Typically, the author / copyist labels one of the faces of the solid figure displayed
in the proposition diagram. In this diagram, though, he has labeled the vertices
that would be visible to the observer if he were to take a viewpoint from directly
above one of the vertices, in this perspective, the lowest or the bottom point. These
labeled vertices are not in the same face, even though they are all in the same plane.

2

*Diagram based on a drawing in http://www.cadimage.net/postimages/soccer-2.jpg
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1. The author / copyist has omitted the last portion of the enunciation, although
the conclusion to the proposition makes clear that these relations are also part
of the proposition.

2. Only when dealing with the icosahedron does the author specifically draw the
visible half (al-nisf al-mar’iy) rather than the entire polyhedron. He will follow
the same pattern in proposition XI.

3. Proposition 1.

4. Proposition III.

5. Proposition II.

Proposition V

We want to draw in a cube a polyhedron <having> fourteen <equilateral> (1)
faces, six <of them> octagons and eight <of them> triangles, <and to show that
the polyhedron occurs in a sphere>. (2)

Let the cube be ABGD.

B

Gl (D]

We draw in each of its faces an octagon, (3) so that there are formed six octagons.

And there is produced at each of its eight vertices a triangle because each
<vertex> is composed of three planar angles.

And on the example of what preceded, it may be shown that the polyhedron
occurs in a sphere. (4)

This is what we wanted.

Commentary and Notes

In this proposition, we construct a truncated cube within a regular cube. The
technique is similar to that developed in proposition I. Thus, we draw an octagon
in each of the square faces of the regular cube. Then we remove each vertex from
the cube along a plane passing through the edges of the octagon adjacent to each
vertex. Since three faces come together at each vertex of the cube, the part removed
will be a small tetrahedron. Thus each of the newly formed faces of the truncated
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cube will be triangular. Because of the construction technique, each triangular face
will be equilateral and equiangular.

The diagram in the manuscript has been drawn as though looking directly at one
face of the cube. As is his custom, the author labels only this one face. In the per-
spective drawing, I have indicated the removed vertices of the cube by dotted lines,
whether or not that vertex is visible to the observer. The dashed lines indicate edges
of the truncated cube invisible when looking with the perspective of the drawing. I

have labeled the vertices of one of the constructed octahedrons using numerals 1-8.59

1. The author / copyist has omitted this qualifying term. Since the proposition
follows the same pattern as preceding propositions, I suggest that the term
should have been included. Its absence may well be a copying error.

2. The author / copyist has omitted the last part of the enunciation, although he
again refers to this result at the end of the proposition.

3. Proposition I.

4. Proposition II.

Proposition VI

We want to draw inside a dodecahedron a polyhedron <having> thirty-two equi-
lateral faces, twelve of them decagons and twenty of them triangles, <and to show
that the polyhedron occurs in a sphere>. (1)

Let the dodecahedron be ABGDE.

59Diagram based on a drawing in

http://www.ac-noumea.nc/maths/amc/polyhedr/polyh_draw_htm
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We draw in each face a decagon. (2) Thus there are produced twelve decagons.
And there is produced at each of its twenty vertices a triangle.

And on the example of what preceded, it may be shown that it occurs in a sphere.
(3)

That is what we wanted.
Commentary and Notes

In this proposition we construct a truncated dodecahedron within a regular dodeca-
hedron. We construct in each pentagonal face of the regular dodecahedron a decagon
using a technique similar to that developed in proposition I. In the perspective draw-
ing,% the vertices of one of these decagons are indicated by numerals 1-10. Then we
remove each vertex of the regular dodecahedron along a plane passing through the
sides of the decagon adjacent to the vertex. Since three faces of the regular dodeca-
hedron converge at each vertex, the newly formed faces will be equilateral triangles.
The removal of vertex A has been indicated in the perspective drawing using dotted
lines. In constructing the drawing, I have followed the convention of the author in
adopting a point of view from directly above one of the pentagonal faces. Dashed
lines are used to indicate edges invisible to the observer in the perspective of the
drawing.

50Diagram based on a drawing in http://www.math.fau.edu/locke/Graphs/dodecahedron.jpg
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1. In this proposition the author / copyist has again omitted the concluding state-
ment from the enunciation of the problem, although he refers to it in the con-
clusion of the proposition. It is possible that the omission is made because
the full demonstration is not given, but the reader is referred to the earlier
proposition for the argument.

2. Proposition I.

3. Proposition II.

Proposition VII

We want to draw inside an octahedron a figure (polyhedron) <having> fourteen
equilateral faces, eight triangles and six squares <and to show that it occurs in a
sphere>.

Let the octahedron be ABG.

) A2

We bisect each of its sides (edges) and connect the lines. Thus there is produced
in each face of the octahedron an equilateral triangle (1) because each of its sides is
half the side (edge) of the octahedron.
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And there is formed at each of the six vertices of the octahedron a quadrilateral.
It may be shown, on the example of what preceded, that they are squares. (2) Thus,
the <desired> polyhedron is produced.

And, on the example of what preceded, it may be shown that it occurs in a
sphere. (3)

That is what we wanted.

Commentary and Notes

This proposition introduces a new technique which will be used also in propositions
VIII and X-XI. We bisect the midpoints of the sides (edges) of each face of the
octahedron and join these midpoints with the midpoints of the adjacent faces. Thus
we form an equilateral and equiangular triangle, whose side is half that of a side
(edge) of the octahedron, in each of its faces.

In this proposition we construct the semiregular cuboctahedron within a regular
octahedron. To do so, we bisect the sides of each triangular face of the octahedron,
forming eight triangular faces. We then remove the vertices of the octahedron along a
plane passing through the sides adjacent to each vertex. Since four faces converge at
each vertex, the six newly formed faces will be squares. In the perspective drawing,
I have indicated the edges of the tetrahedron using dotted lines, whether or not the
edges are visible to the observer. The edges of the cuboctahedron are drawn with
a solid line if they are visible to the observer. If invisible, they are drawn with a
dashed line.%" As is the custom of the author, only one face of the octahedron is
actually labeled.

51Diagram based on a drawing from

http://www.ac-noumea.nc/maths/amc/polyhedr/polyh_draw_htm
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1. There will actually be formed four equilateral triangles, each with sides equal
to half the side of the octagon. The author has in mind, however, the central
triangle bounded by the lines connecting the midpoints of the adjacent sides
of the octagon face. The central triangle in each face will become a face of the
desired polyhedron.

2. Proposition III.

3. Proposition II.

Proposition VIII

We want to draw this polyhedron inside a cube. (1)
Let the cube be ABGD.

B A

Now, we bisect each of its sides and we connect the lines. (2) Thus, there is
formed, at each vertex of the polyhedron, an equilateral triangle because each one
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of them (3) is subtending a right angle (4) and the sides of these right angles are
equal to one another. (5)

And there is formed in each one (6) the complement of the two angles, each of
which is half a right angle, from two right angles.

And since there are in the cube eight vertices and six faces, there are eight
triangles and six squares.

And it may be shown, on the example of what preceded, that it occurs in a
sphere. (7)

That is what we wanted.

Commentary and Notes

This proposition is the correlate of proposition VII. The cube and octahedron are
called “dual” polyhedra — the cube has eight vertices and six faces, while the oc-
tahedron has six vertices and eight faces. Thus the same semi-regular polyhedron,
a cuboctahedron, will be formed within each of these regular figures when we ap-
ply the bisecting technique introduced in proposition VII. In that proposition, we
formed squares when removing the solid angles of the octahedron and an equilateral
triangle in each face. In this proposition, we form equilateral triangles at each of
the solid angles of the cube and a square in each face.

The drawing in the manuscript is made from the viewpoint of looking at one face
of the cube straight on. In my perspective drawing, I have outlined edges of the cube
using dotted lines, whether or not the edges of the face are visible to the observer.
In constructing the cuboctahedron, I use solid lines when the edges are visible to an
observer and dashed lines when they are invisible.5?

1. That is, we want to draw the same cuboctahedron produced in proposition
VII.

52Dijagram based on a drawing from

http://www.ac-noumea.nc/maths/amc/polyhedr/polyh_draw_htm
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2. He means that we should connect the lines between midpoints of adjacent, not
opposite sides, of each face of the cube.

3. That is, each side of one of the triangular faces of the desired polyhedron.

4. That is, one of the three planar right angles making up the solid right angle of
the cube.

5. That is, in each of the three planar right triangles, each of the two sides of the
right angle is half the side (edge) of the given regular cube.

6. This is, at first reading, a confusing statement. I understand the author to
mean that each of the right angles in the square constructed in the face of
the cube is complemented by a pair of angles equal to one another whose sum
equals the difference between two right angles (a straight line) and the newly
constructed right angle. In the perspective drawing, I have inserted “2” in one
of the right angles of the square and “1” in each of the pair of complementary
angles between the right angle and the edge of the cube. We find a similar
argument involving complementary angles used in proposition X.

7. Proposition II.

Proposition IX

The side (or edge) of this polyhedron (1) is the side of the hexagon occurring in a
great circle of the sphere in which this polyhedron occurs.
For its demonstration, let ABGDE be four of its faces.

B

We join AD, BG.

And if we join the center of the sphere (2) — let us specify it as M (3) —
and A, B,G, D, E there are formed triangles MAE, MBE, MGE, MDE, the an-
gles <at> M <being> equal to one another. [If] we extend from points 4, B, G, D
perpendiculars to line M E they come together at a [single] point. Thus quadrilateral
ABGD is in a single plane. (4)

Let this point be [W. Then, because] triangles ABW, DGW have the corre-

sponding angles equal to one another (5) and likewise [triangles] [A|]DW, BGW, the
angles of quadrilateral ABG D are equal to one another. Thus it is a parallelogram.

(6)
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Now, if we join <a line> between A, G, it passes through point W. Thus line
EWM is in the plane of triangle AEG. (7)

Now, if we extend the plane passing through the center (point M) and likewise,
the plane of line FG, together with the line which meets it, passes through the
center, the two planes are the same. If not, we extend from a point on line EG,
lines in the two planes to the center. Then the two of them surround an area. This
is impossible.

Likewise for the planes passing through the remaining sides of hexagon AEG.
Therefore, hexagon AEG falls within a great circle of the sphere.

That is what we wanted.

Commentary and Notes

In proposition VII, the side (edge) of the newly formed triangular face of the cuboc-
tahedron is half the side (edge) of the face of the octahedron. But in proposition
VIII, the side (edge) of the newly formed square face of the cuboctahedron is not
half the side (edge) of the face of the cube. How is this newly formed side (edge)
related to the side (edge) of the cube? This proposition shows that it is equal to the
side of the hexagon occurring in the great circle of a sphere that circumscribes the
cuboctahedron. The result is immediately obvious when we consider the equatorial
polygon of the cuboctahedron.53

In the perspective drawing, I have outlined some (but not all) of the faces of the
cuboctahedron.* The edges of the four faces used in this demonstration are in solid
lines, the other edges are in dotted lines. The constructed lines are indicated by
dashed lines.

53For a discussion of the equatorial polygons associated with various semi-regular polyhedra, see
Coxeter [1973, 17-20].
54My diagrams are based on a drawing from

http://www.gaia-orionis.co.uk/Journeys_Overview.php
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1. The reference is to the cuboctahedron constructed in the previous two propo-
sitions.

2. That is, the sphere circumscribing the cuboctahedron. Because a regular
hexagon is made from six equilateral triangles, the side of the hexagon is also
the length of the radius of the circle.

3. In ancient Greek mathematics, the letter labels are typically assigned in al-
phabetical order as the elements are introduced into the demonstration, and
even if this pattern is not completely followed, the lettering will be “compact”,

65 This procedure is often imported into the Arabic

not omitting any letters.
Euclidean tradition as well. In this proposition we encounter an exception
to the rule — and it is sufficiently exceptional that it immediately stands out
to someone accustomed to reading Euclidean treatises. One might speculate
that the author intended the letter M to represent the Arabic term for center
(markaz) but there is little evidence to support the hypothesis since the center
of the triangle in proposition I is not labeled M.

4. Proposition III.

5. Someone has written above the line: “Its demonstration was undertaken in
proposition III”. The statement does not appear to be the hand of the copyist.

6. Elements 1,27.

7. The triangle and the line have at least two points in common (E and W) so
that they share a common section. This is only possible if they lie in the same
plane.

VIII.1 Proposition X

We want to draw, inside a dodecagon, a polyhedron <having> thirty-two equilateral
faces, twenty triangles and twelve pentagons and show that it occurs in a sphere.

55Netz [1998, 35].



188 Gregg De Young SCIAMVS 9

Let the dodecagon be ABGDE.

We bisect each of its sides and connect the lines. (1) Then there is produced
at each solid angle a triangle and in each pentagon, a pentagon because each of its
angles (2) is the complement of two angles whose sum is the difference between two
right angles and the angle of the pentagon. (3)

But since the vertices of the dodecagon are twenty, the triangular <faces> of this
<new> polyhedron are twenty and its pentagonal <faces > twelve.

On the example of what preceded, it maybe shown that it occurs in a sphere. (4)

That is what we wanted.

Commentary and Notes

In this proposition, we construct an icosidodecahedron using the technique of bi-
secting the sides (edges) of each face of the dodecahedron. This produces a new face
similar to each of the original faces. We remove each vertex of the dodecahedron
along a plane that passes through each one of the edges of the new faces that lie
adjacent to the vertex. Since three pentagonal faces converge at each vertex, the
newly formed faces will be equilateral triangles.

The perspective diagram shows the regular dodecahedron with which we begin
the proposition.®® The solid lines represent edges that can be seen by the observer,
dashed lines represent edges not visible to the observer. Within the dodecahedron,
the new pentagonal face has been drawn in face ABGDE using dotted lines. The

5Diagram based on a drawing from http://www.math.fau.edu/locke/Graphpic.htm.
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removal of the vertex at A, creating a triangular face is also outlined in dotted lines.
The same procedures can be used for every face and vertex.

1. He intends that we should connect each midpoint only with the midpoints of
the adjacent sides of the pentagonal face.

2. He refers to the angles of the newly formed pentagon within the pentagonal
face.

3. The angle of the newly formed pentagon (indicated in the perspective diagram
by the number “2”) is less than two right angles by the amount of a pair of
angles (indicated in the diagram by number “1”) — and their sum is the differ-
ence between the angle of the pentagon and two right angles (a straight line).
A similar argument involving complementary angles was used in proposition
VIII.

4. Proposition II.

Proposition XI

We want to draw this polyhedron (1) in an icosahedron.
Let the visible half (2) of the icosahedron be ABGDE.

. B
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We bisect each of its edges and join the lines. (3) Thus there is produced in each
<face of the icosahedron> a triangle, (4) and at each vertex a pentagon.

But since the vertices of the icosahedron are twelve, there are twelve pentagons
and its triangles are twenty. Thus, everything is as we have mentioned <in the
previous proposition>.

And on the example of what preceded, it may be shown that it (the thirty-two
sided polyhedron) occurs in a sphere (6).

That is what we wanted.

The edge of this polyhedron is the edge of the decagon occurring in a great circle
of the sphere, on the example of what occurred in the preceding proposition (7).

And when these two polyhedra (8) are cut by two bisecting circles (9), and the
sides (edges) of the faces <of one of the polyhedra> be compared to the sides (edges)
of the corresponding faces <of the other polyhedron>, there are formed two other
polyhedra occurring in the sphere (10).

Notes and Commentary

This proposition is a correlative to proposition X. Llke the cube and octahedron,
the icosihedron and dodecahedron are “dual” polyhedra. Because the number of
faces of the icosahedron equals the number of vertices of the dodecahedron and vice
versa, we saw that in the dodecahedron of proposition X we create pentagons in the
pentagonal faces and triangles at the vertices. In this proposition, we begin with an
icosahedron and create a triangle in each of the triangular faces and pentagons at
each vertex (because five triangular faces converge at each vertex of the icosahedron).
In the perspective drawing, one of these new triangular faces is shown in dotted lines
in face ABZ.5" The new pentagonal face formed by removing one of the vertices
of the icosahedron is indicated at vertex A, again using dotted lines. The same
procedures would be carried out in each face and at each vertex of the icosahedron.

5"Diagram based on a drawing from http://www.scio.org.uk/links
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1. That is, we want to construct an icosadodecahedron within the icosahedron.

2. Only when dealing with the icosahedron does the author specifically represent
only the visible half (al-nisf al-mar’iy) rather than the entire polyhedron. He
follows the same procedure in proposition I'V.

3. He means the lines joining the midpoints of the edges in each face.

4. As we saw in proposition VII, there are actually four equilateral triangles
formed, but he is interested only in the triangle formed between the lines
connecting the midpoints of the sides of the triangular faces.

5. Proposition II.

6. He refers to proposition IX, where we show that the edge of the cuboctahe-
dron is equal to the edge of the hexagon occurring in a great circle of the
circumscribing sphere. The argument in the present proposition follows a par-
allel development. When we look at the perspective drawing, the conclusion

appears to be obvious.%®

7. He means the icosadodecahedrons formed in proposition X and in this propo-
sition.

8. I interpret this to refer to the great circles mentioned in the enunciations of
these propositions, since any great circle divides its sphere in half.

9. This is a cryptic statement that is not easy to decode. I believe that the dual
forms used in the Arabic refer to the cuboctahedrons of propositions VII-VIII
and the icosidodecahedrons of propositions X-XI. In the case of the cubocta-
hedron, if we cut the polyhedron along its equatorial plane and rotate one half
through a sixth of a turn relative to the other half, so that the faces move over
one position we form a new figure, a triangular orthobicupola. Similarly in
the case of the icosidodecahedron, if we cut the polyhedron along its equatorial
plane and turn one half a tenth turn relative to the other, we form a pentagonal
orthobirotunda.

58Diagram based on a drawing from

http://www.mathartfun.com/shopsite_sc/store/html/PolyhedraAbout.html
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Proposition XII

We want to draw an eight-sided polyhedron <having> equilateral faces, half of them
hexagons and half of them triangles, in a given sphere.

Let the sphere be ABG and let us draw in it a tetrahedron having four equilateral
triangular faces. Let triangle ABG be one of its faces.

y/ANEIVAN
4

AVAVA
=Y

We draw in the tetrahedron this polyhedron. Then we connect between the center

of the sphere and the vertices of the polyhedron by lines and extend them to the
circumference of the sphere. We connect between the extremities of these lines.
Thus there is produced the desired polyhedron.

That is because the sides (edges) of the two polyhedra subtend the angles pro-
duced at the center of the sphere.

But the sides (edges) of the smaller polyhedron are equal to one another. (1)
Thus, these angles are equal to one another. Therefore, the sides (edges) of the
larger polyhedron are also equal to one another. (2)

But because the triangles produced from these lines, together with the sides
(edges) of the smaller polyhedron, are isosceles, likewise the triangles formed from
them with the sides of the larger polyhedron <are isosceles>. Therefore, the angles
which are at the bases of the triangles are equal to one another. (3)

Now, the sides (edges) of two polyhedra are [parallel to one another|. (4) Thus,
the angles of their bases are equal to one another. (5)

But the planes passing through the sides (edges) [of the two polyhedra] are parallel
to one another. Therefore, the sides (edges) of each face of the larger polyhedron
are in [the specified sphere].

That is what we wanted.

It is possible, on the example of this procedure, to draw all <the polyhedra>
which we have drawn <so far> within a given sphere.
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Commentary and Notes

In this proposition, we construct a truncated tetrahedron in a sphere. In proposition
II, the author had claimed that the truncated tetrahedron can be inscribed in a
sphere. He now shows how this can be done. That is, we are going to construct
within the regular tetrahedron the truncated tetrahedron. Euclid, in book XIII, has
shown that the regular solids can be inscribed in a sphere, but does not provide the
procedure for doing so. Pappus in Collections III, problems 54-58, has shown such a
technique. Our text assumes that the reader will already know this procedure. Our
text then assumes the construction of a truncated solid within this circumscribed
Platonic solid. To do so, we can follow the procedure explained in proposition II. We
then project the vertices outward to fall on the sphere and connect these vertices to
find the expanded version of the truncated polyhedron. In the perspective drawing,
we have a truncated tetrahedron, outlined in dashed lines, inscribed in a regular

tetrahedron. The dotted lines show the projection of one hexagonal face of the
9

truncated tetrahedron onto the sphere.%

1. The equality comes from the construction of the regular tetrahedron.

2. Elements VI,6. They are equal because the vertices are equidistant from the
center of the sphere. Thus the extensions of these straight lines to the surface
of the sphere are also equal.

3. Elements VI, 5.

4. He means the edges of the original truncated tetrahedron and the edges of the
newly produced truncated tetrahedron. Elements XI, 7.

5. Elements 1, 7.

6. Elements XI, 15.

59Diagram based on a drawing from

http://www.synearth.net/afullerex%20Folder/tructetra9.9.JPG.
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Proposition XIII

If, two planes intersecting one another, [there be extended] in the two of them two
perpendiculars <falling> at a single point on their common section, then their two
angles are equal to each angle produced from the two perpendiculars <falling> on
the common section in these two planes.

Let the two planes be AB,GD and <let> their common section <be> EZ. Let
AE,GE be two perpendiculars falling on EZ, and likewise HZ, ZT.

T G

i N

D

Now we say: On account of angles AEZ, HZE being right, lines AE, HZ are
parallel to one another (1). On that pattern, it may be shown that lines GE,TZ
are parallel to one another.

Thus, the sides of angles AEG, HZT are parallel to one another. Therefore, the
two angles are equal to one another. (2)

That is what we wanted.

Commentary and Notes

The conclusion of the proposition, that angles whose sides are parallel to one another
are equal angles, is clearly stated. On must wonder why the author chose such a
convoluted formulation for the enunciation of the problem. The present enunciation
reads much more like a summary of the procedure for demonstrating a result. Al-
though the argument is straightforward, the lack of perspective in the diagram may
make it a little difficult at first to follow the logic using the diagram. I have redrawn
the diagram in more modern perspective terms. In this redrawn diagram, I use a
dashed line to indicate the common section between the two planes.
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G

1. Elements 1, 28.
2. Elements XI, 10.

Proposition XIV

If two lines be perpendiculars <falling> on a line and the three <lines> be in single
plane, and there be extended from the meeting of the two perpendiculars and the line
two perpendiculars to that line in the elevation of the plane and the two surround,
together with the first two perpendiculars, two angles equal to one another, the two
of them are in the same plane.

For example, <let> ABGD be a plane and AB,GD be two perpendiculars
<falling> on line BG in that plane and <let> lines BE,GZ be two perpendic-
ulars <falling> on line BG and <let them be> in the elevation of the plane, and
the two of them surround, together with lines AB,GD, two angles equal to one
another.

Z

We say that lines BE,GZ are in the same plane.

For if a plane passes through lines BE, BG, it passes through line GZ. But if
not, it passes to one side of it (that is, line GZ).

Now, if we specify <another> plane passing through lines GD,GZ and that
plane, line BG is a perpendicular <falling> on this plane, an account of angles
BGD, BGZ being right (1), then the common section between this plane and the
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plane passing through lines BE, BG is perpendicular to line BG (2). Thus the angle
which is between the common section and line DG is equal to angle ABE.

But angle DGZ was equal to it. Therefore, it is necessary that the part and the
whole be equal to one another (3). This is impossible.

That is what we wanted.

Commentary and Notes

This proposition is built on the previous proposition. It is, in a sense, a converse
to the preceding proposition. In this proposition, we argue from the fact of equal
angles to the conclusion that the lines forming the sides of the angles are in the same
plane. In proposition XIII, we showed that if the sides of the angles are parallel to
one another, the two angles will be equal to one another.

In the perspective drawing, I have used dotted lines to indicate the presence of
planes that are assumed in the demonstration but not specifically defined in the
proposition itself. The common section between the two planes is indicated using a
dashed line.

1. Elements X1, 4.

2. The common section mentioned in this statement is either line GZ or a line to
one side of it.

3. That is, if the plane through BE, BG passes to one side of GZ, the angle of
the common section will be greater or less than right angle DGZ, even though
it has been argued that it must be equal to it.

Proposition XV

The ratio of the diameter of the circle to the side of an equilateral polygon occurring
within it is as the ratio of the diameter of any <other> circle to the side of that
<same> polygon occurring within that circle.

For example, <let> ABG be a circle, AB its diameter, BG the side of an equi-
lateral polygon occurring within it; DEZ is another circle, DE its diameter, EZ
the side of the polygon occurring within it.
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D A

We say <that> the ratio of AB to BG is as the ratio of DE to EZ.

We connect lines AG, DZ. Then, in triangles ABG, DEZ angles A, D are equal
to one another (1). Likewise, angles G, Z, on account of the two of them occurring in
two semi-circles (2). Likewise, the two remaining angles <are equal to one another>.
Thus the sides of the two triangles are proportional. Therefore, the ratio of AB to
DE is as the ratio of BG to EZ. (3)

But by alternation, the ratio of AB to BG is as the ratio of DE to EZ.

That is what we wanted.

Commentary and Notes

The diagram for this proposition is improperly constructed so that it does not ac-
curately portray the geometrical situation described in the text, since it does not
include the diameters of the circles, which are specifically mentioned in the proposi-
tion. I have reconstructed the diagram according to the text of the proposition and
give that reconstruction below. The constructed lines are indicated as dashed lines.
I have also included the outline of the equilateral figure (based on the diagram in
the manuscript, it should be a triangle), in dotted lines.

E B

The proposition as it stands does not demonstrate similarity of figures which
should be required in order to conclude that parts stand in a ratio to corresponding
parts. In order to complete the proof, we need further information that will allow
us to show that the figures are equiangular in addition to being equilateral.

1. The angles at A and D are equal because they represent angles formed between
the line connecting the center of the circle to the vertex of the polygon and the
side of the given equilateral polygon.
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2. Elements 111,31 .
3. Elements V1, 4.

Proposition XVI

If there be two lines according to the ratio of the diameter of a circle and the side of
an equilateral polygon occurring within it, then the shorter line is the side of that
polygon occurring within the circle of which the longer <line> is its diameter.

Let A be the diameter of the circle, B the side of its [decagon], and G, D are
according to this ratio, and the shorter is D.

We say <that> D is the side of a decagon of the circle <of which> G is a
diameter.

If not, let the side of its decagon, namely E, be longer or shorter than it. (1)
Then the ratio of A, B is as the ratio of G, E. (2)

But G, D is this ratio. So D, E are equal to one another. (3) That is a contra-
diction.

Commentary and Notes

This proposition is a converse of the previous proposition.

The diagram for this proposition has been almost completely destroyed. Based
on the surviving fragment taken in isolation, it is impossible to guess whether the
diagram lines would have been drawn with differing lengths (even if not really ap-
proximating the expressed ratio) or whether the lines would have been constructed
with uniform lengths (and so clearly not conforming to the verbal statement of the
proposition). If we look to other portions of the manuscript where straight lines are
used to represent magnitudes, as in books V and VII-IX, we see that the copyist is
inconsistent in his practice. In book V, many diagram lines differ in length, while
in books VII-IX, the tendency (but by no means a universal practice) is to produce
all the lines the same length. Just about the only feature of the diagram of which
we are quite certain is that the lines were arranged vertically. I indicate the recon-
structed portion using dashed lines and labels in square brackets. I have opted, in
my reconstruction, to make all the lines the same length.

1. The pronoun here clearly refers to line D.
2. Proposition XV.
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3. Elements V,11 and 9.

Proposition XVII

We want to draw inside a circle a quadrilateral similar to a right-angled parallelo-
gram.

Let the circle be ABG and the quadrilateral WZHT. We connect WH, ZT and
it may be shown that the two diameters bisect one another (1).

o T

Let us find the center of the circle, namely E (2). Let us construct within it (the

circle) angle AEB equal to angle WY Z (3) and we extend AF, BE to G, D and we
connect E, E, GT, DA.

We say <that> in triangles AEB, WY Z angles E,Y are equal to one another.
Thus there remains the sum of the two remaining angles from one of them is equal
to the sum of the remaining <angles> from the other.

But on account of sides AE, EB being equal to one another, angles A, B are
equal to on another. But angles W, Z are equal to one another (4). Thus each of
angles A, B are equal to W, Z.

Now, the angles of triangles AEB, WY Z are equal to one another. Thus, the
two triangles are similar to one another. (5) Likewise, the three remaining triangles
<are similar to one another>. Therefore, the areas are similar to one another.

That is what we wanted.

Commentary and Notes

1. We could, for example, construct a circle to circumscribe the right-angled par-
allelogram. The center of the circle will be where the diagonals meet. Each
half-diagonal will be equal to every other half-diagonal, since each is a radius
of the circle. This will only happen, though, in the case of the right-angled par-
allelogram. Also, because we have a parallelogram, in triangles ZWY,YTH
angle Z equals angle T and angle W equals angle H. HT equals ZW because

the figure is a parallelogram. Thus triangles ZWY and YT H are congruent,
with respective sides and angles equal. Thus Y is the midpoint of the two
diagonals of the parallelogram.
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2. Elements I1I, 1.

3. The construction assumes that we first insert a diameter — either AG or BD
— into the circle and locate point E on it. Then we can use Elements 1,23 to
construct the angle.

4. The abstract enunciation of the problem specifies that the figure is right-angled.
And we know that all right angles are equal.

5. Elements VI, definition 1.

Proposition XVIII

We want to draw in a sphere a polyhedron <having> equilateral faces, two of which
are specified figures occurring in a single circle (1) and the remainder are squares.
Let the two figures be decagons, and <let> circle ABG be a great circle of the
sphere; <let> line WE be the diameter of the circle and EZ a side of its decagon. (2)
Let it (EZ) be perpendicular to it (WE). We complete right-angled parallelogram
WEZH. We draw in circle ABG quadrilateral ABGD similar to it. (3). Let AD
correspond to WE. And let us bisect [AD] at [T] and BG at Y. We extend from
points T, Y perpendiculars to the plane of the circle and we extend them from their

extremities to the circumference of the sphere. Then the perpendicular extended
from T, together with the line AD is in one plane. Likewise, the perpendicular
extended from Y, together with line BG, is in one plane. (4)

H w

G D

But the two common sections from the two planes and the surface (5) of the
sphere are two circles.

Let us connect, for the sake of its demonstration, line TY', namely a perpendicular
to lines AD, BG. It passes through the center of the circle — I mean, the center of
the sphere (6) — and it falls on the two perpendiculars also. Thus, it is perpendicular
to the planes of the two perpendiculars and lines AD, BG.

But if we extend from the center of the sphere lines to their extremities, (7) there
are produced right triangles, namely the angles at T.. Their chords are equal to one
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another and they are halves of diameters of the sphere. And one of the sides of the
right angles, namely line TK, is shared. Thus the remaining sides are equal to one
another.

Now, the common section between this plane and the surface of the sphere is a
circle and its center is point 7. And on account of that, the plane passing through
the other perpendicular and line BG of a circle whose center is Y and lines AB, DG
are the decagons of the two of them.

If we draw in the two circles two decagons and we make their beginning points
A, B, then line AB is a connection between their two angles.

But if we join, in the planes of the two circles, lines between the centers and the
angles of the decagons, they are perpendicular to line 7Y and above the plane of
quadrilateral ABGD. Thus the lines which, together with lines AT, BY, surround
the equal angles are in a single plane.

Now, if we join the angles of the two decagons with lines, they will be parallel to
line W Thus these lines, too, are perpendicular to the planes of the two circles.

Now, the angles [produced] from them and from the sides of the decagon are right
and they (the perpendiculars) are parallel to one another. Thus there are formed
from them and from the sides of the two decagons, squares. (8)

That is what we wanted.

And it [may be shown] from this that equilateral figures drawn in a sphere are

limitless.
Commentary and Notes

In this proposition, we construct a decagonal prism.”” The figure consists of two
planes parallel to a great circle such that the two planes cut the sphere forming
equal circles. In these two circles we construct our desired equilateral figures — in
this case decagons. We arrange these figures so that the vertices of one lie directly
over the vertices of the other in the other plane and connect the two vertices by lines
between the two planes. We show that these connecting lines are perpendicular to
the planes of the circles and that they are all equal to one another. The semi-regular
polyhedron formed in this procedure is not an Archimedean solid.

Dijagram based on a drawing from

http://streaming.stat.iastate.edu/ dicook/geometric-data/polyhedra/prism/
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. The two specified polygons must be the same.

. Proposition XVI.

. Proposition XVII.

. Proposition XIV.

. The term sath typically is translated as plane or area, depending on the context.

Here, however, it must mean the surface (and in that sense, an area) of the
sphere.

. Since ABGD is a great circle, it passes through the center of the sphere.
. That is, the extremities of the perpendiculars or lines AD, BG.
. The ratio of WE to EZ is given as the ratio of the diameter of the circle to

the side of the decagon inscribed within that circle. Since we have constructed
ABGD to be similar to WEZH, the ratios of DA to AB or GB to BA are
also in the ratio of the diameter to the side of the decagon. If AD, BG are
the diameters of the two circles, then AB,GD are equal to the sides of the
decagons inscribed in these circles. In that case, the quadrilaterals formed by

joining the vertices of the two polyhedra (decagons, in this case) are squares.”

Proposition XIX

We want to draw inside a sphere a polyhedron having equilateral faces, two of which

are a specified figure occurring in the same circle (1) and the remainder <being>

triangles.

Let the two shapes be squares and let square ABG be in circle AB. (2)

"1 thank one of my referees for helping to explicate the geometry of this proposition.
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A
W)

G

We bisect arc AB at D and we connect chord AD. We draw on line AB a
semicircle and we draw chord AE equal to AD and we connect BE.
Let WZ be equal to AG and <let> ZH, a perpendicular to WZ, be equal to

BE . We complete quadrilateral WZH.
Let TY L be a great circle that occurs in the sphere. We draw in it quadrilateral
TKLY (3) similar to quadrilateral WZH (2). Let KT correspond to WZ and TY

correspond to ZH.

-
-
-
-

We extend perpendiculars KN, LS to the plane of the circle and we extend planes
KTN, YLS until there are formed in the sphere circles TK,Y L.

We draw in circle TK square TOK. We mark off arc Y M from the sphere. We
draw from it square M F. We mark off arc TO [from] the circle and we connect SM
(4). Tt may be shown that it is equal to TY. We connect TM, TS.

We say <that> the ratio of SM — I mean TY - to TK is as the ratio of BE to
AG — 1 mean, the ratio of ZH to ZW.

But the ratio of TK to TO is as the ratio of AG to AB and the ratio of TK to
TS is as the ratio of AG to AE, I mean AD. So the ratio of SM to TO is as the
ratio of BE to AB

But <its ratio> to ST is as the ratio of BE to EA and angles S, E in triangles
TSM,AEB are right angles. Thus the two triangles are similar.

The ratio of SM to TM is as the ratio of BE to AB. But the ratio of SM to TO
is likewise. Thus TO,TM are equal to one another.
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But we connect MO and it may be shown that it is equal to TO. Thus triangle
TMO is equilateral. And if we connect between the points of the angles, the desired
figure is found.

And the species of this polyhedra also are limitless.

Commentary and Notes

In this proposition, we construct a square antiprism.”>

The proposition includes a pair of complementary diagrams. These have been
separated on two successive pages in the current copy of the manuscript. In their
current positions, these diagrams have been placed in the reverse order from the
way their elements are introduced in the text. I believe that they were originally
placed side by side in the exemplar from which the copyist is working. The copyist,
however, neglected to leave sufficient room for the entire diagram and, beginning
his construction from the right-hand side of the diagram, was forced to move the
left-hand diagram to a later position in the proposition. I have not found any other
example of a reversal of two diagrams elsewhere in the manuscript. I have placed
the two diagrams in the proper order in my translation. I have also provided a
provisional reconstruction of the missing section of the first diagram which has now
been destroyed through damage to the margin of the manuscript.

This proposition uses a technique in some ways similar to that employed in the
previous proposition. We divide a sphere using two planes parallel to a great circle
and at equal distances on either side of it so that there are produced in the sphere
two circles. In each of these circles we draw the desired figure — in this case a square.
If we position these figures so that the vertices of one are directly above the other,
we will produce a situation like that in proposition XVIII, in which the lines between

"2Diagram based on a drawing from

http://www.ac-noumea.nc/maths/amc/polyhedr/convex2_.htm
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the vertices of the two squares will be perpendicular, forming rectangular figures.
In the present case, however, we want to form equilateral triangles between the two
circles. Thus we must rotate one of the figures such that its vertices lie opposite
the midpoint of the arc of the other circle cut off by the corresponding side of the
opposite figure. The situation is illustrated in the perspective diagram above. The
result produced in this construction is a semiregular polyhedron that is not one of
the classic Archimedean solids. As in the case of the prisms, an infinite series of
such polyhedra can be formed.

The proposition opens with a preliminary construction through which we estab-
lish the relationship between WZ and ZH in terms of the relationship between AG
and BE in the circle. WZ and ZH give us the relation between the diameter of the
sphere and the distance between the two circles, as in proposition XVIII.

A Y

o

Having established these relationships, we now can proceed to the construction
of the polyhedron itself. We begin with a great circle of the sphere within which we

construct quadrilateral YT K L equal to quadrilateral W ZH. We erect perpendicu-
lars at K and L, creating planes Y LS and TK N which cut the sphere to produce
two circles. Within these circles, we construct squares TOK and M F'.

Now, if we compare the constructions in the first part of the demonstration with
those in the second part, we can immediately see several relationships:
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TK : TO :: AG: AB
TK : TS :: AG: AE (= AD)
SM :TO :: BE: AB

Thus we see that

SM : ST :: BE : EA

Now, angle E of triangle AEB is right because it occurs in a semicircle (Elements
I11,31) and in triangle TSM angle S is right because S was constructed to be the
midpoint of arc TO and hence it is directly above point M. Therefore triangles
TSM and AEB are similar (Elements VI, 6), so that

SM :TM :: BE: AB

But since

SM : TO :: BE : AB

it is clear that

TM =TO

In the same way, we can show that MO = T'O. Thus triangle TMO is equilateral.
The same argument can be used for each triangle constructed between the two circles
and their inscribed squares.

1. The two polygons must be the same.

2. The intent in this statement is not just that the square is somehow enclosed
inside the circle, but that it is circumscribed by the circle.

3. Proposition XVIII.

4. Line KL, needed for construction of this quadrilateral, is not present in the
existing diagram. It has been added using dashed lines.

5. Lines SM and T'S are missing from the diagram as found in the manuscript. I
have added them using dashed lines.
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