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I Introduction

Brahmatulyasāran. ı̄ is the name most often given to a set of tables (Sanskrit sāra-

n. ı̄/sārin. ı̄, kos.t.haka) based on Bhāskara II’s astronomical handbook Karan. akutūhala

or Brahmatulya (epoch 1183 CE), which in turn is a condensed and simplified adap-

tation of the same author’s treatise Siddhāntaśiroman. i. The name Brahmatulya

means “equal or corresponding to the Brāhma,” i.e., the Brāhmapaks.a school of

astronomy adhered to by Bhāskara II, which follows the parameters of the Brāhma-

sphut.asiddhānta of Brahmagupta (628 CE). The Brahmatulyasāran. ı̄ tables record

Brāhmapaks.a-derived values of planetary mean motions with orbital and geograph-

ical corrections for computing their true motions for a given terrestrial location,

topics which are addressed in chapters 1–2 of the Karan. akutūhala.

There are at least five extant manuscripts of the tables of the Brahmatulya-

sāran. ı̄, some with occasional expository details in table headers and marginal notes.

A brief description of their contents has been published by Pingree [1968, 36–37]

based on the manuscripts described in tables 1–4 below; we have used also the

so-called Karan. akutūhala-sārin. ı̄ in BORI 501/1895–1902. A critical edition of the

tables based on these five manuscripts is currently in preparation.

One of the Brahmatulyasāran. ı̄ manuscripts also contains (S29, ff. 6r–6v) the only

currently known copy of ten verses explaining the use of the tables, plus a colophon

and two post-colophon verses on astrological matters; it was copied by an otherwise

unknown scribe named Malūkacandra. It consists of an invocation and prescribed

algorithms for accomplishing fundamental tasks of astronomy: computing planetary

mean longitudes measured along the ecliptic for a given date, correcting them for

orbital anomalies reckoned from the so-called manda and ś̄ıghra apogees (see the

technical analysis for verses 4–7) while interpolating linearly between tabulated val-

ues, and reducing arcs to the appropriate trigonometric quadrant. A few different

verse meters are used, primarily śārdūlavikr̄ıd. ita and upajāti : several of the verses

draw on corresponding text in Karan. akutūhala chapter 2 for their style and/or con-

tent.
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In the present paper, we provide a critical edition with transcription, translation,

and technical commentary for this very terse explanatory text.

I.1 The Relationship of the Brahmatulyasāran. ı̄ and the Karan. a-
kutūhala

There are a few known instances of second-millennium karan. a works giving rise to

eponymous table texts using the same epoch date, composed either by the kara-

n. a’s author or by a later compiler.1 The Brahmatulyasāran. ı̄, although it does not

explicitly mention the Karan. akutūhala or its author Bhāskara, conforms closely to

this pattern. The name Brahmatulya is well attested as one of the alternate ti-

tles of the Karan. akutūhala [Pingree 1970–94, A4, 322], and as noted above, one of

the known Brahmatulyasāran. ı̄ manuscripts is actually titled Karan. akutūhala-sārin. ı̄.

The evident (though not entire) reliance of the Brahmatulyasāran. ı̄ on the Karan. a-

kutūhala’s epoch date (discussed in section I.2), and its allusion in verse 2 to an

unspecified algorithm “stated in the handbook” (karan. okta), corroborate the infer-

ence that this kos.t.haka work is largely derived from an earlier karan. a and that the

karan. a in question is the Karan. akutūhala. Close resemblances between the two texts

in the content and phrasing of some verses and table headers (described in detail in

section II) further confirm this conclusion.

Other than these examinations of some technical details concerning computa-

tional methods and textual borrowings (see also Montelle [2013]), we know almost

nothing about the historical context of the conversion process from karan. a to sāran. ı̄,

i.e., when, where and by whom the Brahmatulyasāran. ı̄ was compiled as a separate

work. The possible identity of its author with one Nāgadatta to whom is attributed

a Karan. akutūhala-gata-sāran. ı̄ has been suggested, but not yet investigated [Pingree

1970–94, A5, 166].

I.2 A Description of the Sources

The contents and organization of each of the five known manuscripts of the Brahma-

tulyasāran. ı̄ are outlined in tables 1–5; the quantities they refer to are discussed in

section II. (Note that the abbreviation 20YP stands for “20-year-periods” and a

celestial longitude in the form as b◦ represents a zodiacal signs of 30◦ each plus b

degrees within a sign.)

The manuscripts’ table data contain a few scraps of indirect evidence bearing

on the date of their compilation. In most of the mean motion tables, for instance,

initial mean positions correspond to the Karan. akutūhala’s 1183 epoch. However,

1 E.g., the karan. a and kos.t.haka both entitled Rāmavinoda, composed by Rāma in the late sixteenth

century, and the numerous versions of Grahalāghava-sāran. ı̄ based on the 1520 Grahalāghava of Ga-

n. eśa [Pingree 1981, 37–43].
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Folio

No.

Contents

1r-2v The longitude of the moon and its anomaly (argument 0–360◦)

2v-3r Mean motion of the moon per ghat.ikā (argument 1–60 ghat.ikās; no

title)

3r-6r Lunar manda-equation, differences, and gatiphala (argument 0s0◦–

11s29◦)

6r-6v Instructional verses 1–10

Table 1: MS S29, Poleman 4952 (Smith Indic 29)

Folio

No.

Contents

1r Solar declination and lunar latitude (argument 1–90◦)

1r-1v Correction for Mars’ apogee (argument 1–45◦)

1v-2r Solar manda-equation, differences, and gatiphala (argument 1–90◦)

2r- 2v Lunar manda-equation, differences, and gatiphala (argument 1–90◦)

2v-3r Mars manda-equation, differences, and gatiphala (argument 1–90◦)

3r-3v Mercury manda-equation, differences, and gatiphala (argument 1–90◦)

4r-4v Jupiter manda-equation, differences, and gatiphala (argument 1–90◦)

4v-5r Venus manda-equation, differences, and gatiphala (argument 1–90◦)

5r-5v Saturn manda-equation, differences, and gatiphala (argument 1–90◦)

6r-7v Mars ś̄ıghra-equation, differences, and hypotenuse (argument 1–180◦)

8r- 9r Mercury ś̄ıghra-equation, differences, and hypotenuse (argument 1–

180◦)

9v-10v Jupiter ś̄ıghra-equation, differences, and hypotenuse (argument 1–

180◦)

11r-12r Venus ś̄ıghra-equation, differences, and hypotenuse (argument 1–180◦)

12v-13v Saturn ś̄ıghra-equation, differences, and hypotenuse (argument 1–180◦)

Table 2: MS S43, Poleman 4876 (Smith Indic 43)

some manuscript details relating to annual mean longitude corrections (abdab̄ıja

and rāmab̄ıja; see the technical analysis for verse 3) suggest that their tables were

designed for users several centuries after 1183. In the first place, the oldest known

allusion to rāmab̄ıja corrections occurs no earlier than 1519 [Pingree 1996, 169].

Furthermore, some abdab̄ıja values for Venus recorded in a table header in MS S45

f. 5v are assigned to increments of 432, 441, and 450 years. Assuming these refer to

years elapsed since the 1183 epoch, we should infer a compilation date in the range

1615–1633.

In addition, MS S45’s version of the 20-year mean motion tables applies an initial-

position adjustment corresponding to a date as much as 600 years after 1183 (see

the technical analysis for verse 2). These variations from one manuscript to another
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Folio

No.

Contents

1r Mean motions of the sun in days, months, years, and 20YP

1v Mean motions of the moon in days, months, years, and 20YP

2r Mean motions of the lunar apogee in days, months, years, and 20YP

2v Mean motions of the node in days, months, years, and 20YP

3r Mean motions of Mars in days, months, years, and 20YP

3v Mean motions of Mercury’s ś̄ıghra-apogee in days, months, years, and

20YP

4r Mean motions of Jupiter in days, months, years, and 20YP

4v Mean motions of Venus’ ś̄ıghra-apogee in days, months, years, and

20YP

5r Mean motions of Saturn in days, months, years, and 20YP

5v Solar declination

5v Lunar latitude

Table 3: MS SMB, Poleman 4946 (Smith Indic MB LVIII)

suggest that at least some of their author-scribes saw fit to adjust crucial data for

their particular circumstances, although the basic structure and use of the tables

remained unchanged.

Two of the manuscripts mention their date of copying in colophons, although

neither is much help in pinpointing the work’s composition date. In MS S45 (f. 17v

margin):

sam. vat 1855 vars.e śāke 1720 pravarttamāni kārttikavid 11 some

Śaka 1720, or Sam. vat 1855, Kārttika śuklapaks.a 11 corresponds to the date 19

November 1798, which was indeed a Monday or somavāra, as the scribe asserts.

MS B has (f. 28v):

sam. vat 1734 || vars.e kāt̄ı sud̄ı 2 budhavāre poth̄ılas. ı̄tam. caram. bagasu ||

Sam. vat 1734 Kārttika śuklapaks.a 2 corresponds to 28 October 1677 CE which was

in fact a Thursday and not, pace the scribe, a budhavāra or Wednesday. The closing

phrase may indicate that the manuscript (poth̄ı in various northern Indian vernacu-

lars) was copied in a location called something like “Rambag” (possibly Ram Bagh

near Agra?), but the interpretation is very tentative.
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Folio

No.

Contents

2r Mean motions of the sun in days, months, years, and 20YP

2v Mean motions of the moon in days, months, years, and 20YP

3r Mean motions of the lunar apogee in days, months, years, and 20YP

3v Mean motions of the node in days, months, years, and 20YP

4r Mean motions of Mars in days, months, years, and 20YP

4v Mean motions of Mercury’s ś̄ıghra-apogee in days, months, years, and

20YP

5r Mean motions of Jupiter in days, months, years, and 20YP

5v Mean motions of Venus’ ś̄ıghra-apogee in days, months, years, and

20YP

6r Mean motions of Saturn in days, months, years, and 20YP

6v Solar manda-equation, differences, and gatiphala (argument 1–90◦)

7r Lunar manda-equation, differences, and gatiphala (argument 1–90◦)

7v Solar declination and lunar latitude (argument 2–90◦, every second

degree)

7v Correction for Mars’ apogee (argument 1–45◦)

8r Mars manda-equation, differences, and gatiphala (argument 1–90◦)

8v-9v Mars ś̄ıghra-equation, differences, and hypotenuse (argument 1–180◦)

10r Mercury manda-equation, differences, and gatiphala (argument 1–90◦)

10v-11v Mercury ś̄ıghra-equation, differences, and hypotenuse (argument 1–

180◦)

12r Jupiter manda-equation, differences, and gatiphala (argument 1–90◦)

12v-13v Jupiter ś̄ıghra-equation, differences, and hypotenuse (argument 1–

180◦)

14r Venus manda-equation, differences, and gatiphala (argument 1–90◦)

14v-15v Venus ś̄ıghra-equation, differences, and hypotenuse (argument 1–180◦)

16r Saturn manda-equation, differences, and gatiphala (argument 1–90◦)

16v-17v Saturn ś̄ıghra-equation, differences, and hypotenuse (argument 1–180◦)

Table 4: MS S45, Poleman 4735 (Smith Indic 45)

I.3 Typographic Conventions

In the edited text as well as in the transliteration, translation and commentary we

employ the following editorial conventions (see also Montelle and Plofker [2013]):

• Square brackets [ ] indicate an editorial addition or proposed reconstruction of

missing text.

• Scribal variants of nāgar̄ı orthography which are emended silently and not

noted in the critical apparatus (except where the meaning of the original read-
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Folio No. Contents

2r-2v Mean motions of the sun in days, months, years, and 20YP

2v-3v Mean motions of the moon in days, months, years, and 20YP

3v-4v Mean motions of the lunar apogee in days, months, years, and 20YP

4v-5v Mean motions of the node in days, months, years, and 20YP

5v-6v Mean motions of Mars in days, months, years, and 20YP

6v-8v Mean motions of Mercury’s ś̄ıghra-apogee in days, months, years, and

20YP

8v-9r Mean motions of Jupiter in days, months, years, and 20YP

9r-10r Mean motions of Venus’ ś̄ıghra-apogee in days, months, years, and

20YP

10r-11r Mean motions of Saturn in days, months, years, and 20YP

11r-12r Solar manda-equation and gatiphala (argument 1–90◦)

12r-13r Lunar manda-equation and gatiphala (argument 1–90◦)

13r Correction for Mars’ apogee (argument 1–45◦)

13v -14v Mars manda-equation and gatiphala (argument 1–90◦)

14v-16v Mars ś̄ıghra-equation and hypotenuse (argument 1–180◦)

16v -17v Mercury manda-equation and gatiphala (argument 1–90◦)

17v-19v Mercury ś̄ıghra-equation and hypotenuse (argument 1–180◦)

19v-20v Jupiter manda-equation and gatiphala (argument 1–90◦)

20v-22v Jupiter ś̄ıghra-equation and hypotenuse (argument 1–180◦)

22v-23v Venus manda-equation and gatiphala (argument 1–90◦)

23v-25v Venus ś̄ıghra-equation and hypotenuse (argument 1–180◦)

26r-26v Saturn manda-equation and gatiphala (argument 1–90◦)

27r-28v Saturn ś̄ıghra-equation and hypotenuse (argument 1–180◦)

Table 5: MS B, BORI 501/1895–1902

ing may be ambiguous) include the following: anusvāra used for a nasal con-

sonant or an incorrect nasal substituted, omitted visarga, virāma or avagraha,

misplaced dan. d. as, reversed conjunct consonants (e.g., adba for abda), conjunct

consonants that we cannot reproduce in our nāgar̄ı typesetting, doubled con-

sonants after r or across a pāda break, and routinely confused consonant pairs

(e.g., ba for va, s.a for kha).

• Fragments of Sanskrit words or compounds in nāgar̄ı are indicated with a small

circle ◦ at the breakpoint.

• Folio breaks are indicated by a single vertical stroke
∣∣.

• In the critical apparatus, text followed by a single square close-bracket ] indi-

cates the edited version of the manuscript reading that follows it.

• The symbol x within nāgar̄ı text indicates an aks.ara (syllable) that is too

illegible or indefinite in the manuscript to reconstruct confidently; in square
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brackets, it signifies a missing aks.ara (in a metrically deficient verse).

• Numerals in sexagesimal or base-60 notation are shown with a semicolon sepa-

rating their integer and fractional parts, and commas separating their succes-

sive sexagesimal digits. The superscripts s and ◦ and ′ indicate zodiacal signs

(i.e., 30-degree arcs of longitude), degrees and minutes of arc, respectively.

II Text and Translation

om. || śr̄ıgan.eśāya namah. ||

OM. . Homage to Lord Gan.eśa.

Verse One: Invocation

natvā vallabhanandanam. tadanugopālām. hripadmadvayam.
jñātvā śr̄ıguruvākyato hy aharnísam. [dr.s.t.vā] dyum evādhunā ||
siddhāntes.u yathoktakhecaravidhi[bhya]h. spas.t.akos.t.am. muhur

madhyaspas.t.avibhāgato grahagan. āt kurve dinaughād aham || 1 ||

Saluting Vallabhanandana and after him the two lotus feet of Gopāla, having learned

from the word of the revered teacher and having observed the heavens themselves by day

and night, now I shall compute an accurate set of tables from the rules of the planets

as spoken in the Siddhāntas, separately for mean and true [quantities], for the various

planets, from the accumulated days.

Verse Analysis

Meter: śārdūlavikr̄ıd. ita.

Gopāla is a well-known epithet for Kr.s.n. a, but we cannot identify more precisely

the deity referred to as Vallabhanandana. The word dr.s. t.vā “having seen” or “having

observed” is speculatively suggested for the defective second pāda (quarter-verse) to

preserve the meter and the sense.

Verse Two: Computing the Mean Longitudes for a Given Date

kr.tvādau karan.oktavāsaragan.am. śis.t.aih. suhr.s.t.ātmabhir

bhājyam. khāgni 30 mitair avāptakam idam. sūryair 12 vibhājyam. punah. ||
labdham. vim. śati 20 bhir bhajed atha catuh. śes.āṅkasam. jñā dhruvam.
aṅkās te militāh. svakos.t.akagatā laṅkānagaryām. khagāh. || 2 ||

Firstly, computing the number of accumulated days as stated in the handbook, the

learned who are cheerful in nature are to divide [it] by the amount 30; again this quotient

should be divided by 12; one should divide the result by 20. Now, precisely these
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numbers called the four remainder-numbers, [entered into] their respective tables [with

the corresponding entries] combined, are the [mean longitudes of the] planets at the city

of Laṅkā [i.e., for zero degrees of terrestrial longitude].

Verse Analysis

Meter: śārdūlavikr̄ıd. ita.

Technical Analysis

This verse explains how to manipulate the entries in a set of four mean motion tables

provided by the Brahmatulyasāran. ı̄ for each of the specified celestial bodies to reckon

up the body’s mean longitude at a desired time. (MS SMB’s version of these four

tables for the sun is shown in Figure 1 to illustrate the arrangement.) First, the

user must know the ahargan. a or number of civil days elapsed since the tables’ epoch

date. Dividing this ahargan. a by 30 produces an integer number of completed (ideal)

“months” of 30 days each and a remainder D in days. That number of “months”

divided by 12 in turn yields an integer number of ideal “years” of 360 days each

and a remainder M in “months.” The number of “years” divided by 20 gives the

number T of elapsed 20-“year” periods and a remainder Y in “years.”

The first of the four mean motion tables contains successive multiples from 1

through 30 of the body’s mean daily motion, i.e., the amount of change in its mean

longitude over the corresponding number of days. The next three tabulate similar

longitude increments for 1 through 12 ideal 30-day “months,” 1 through 20 ideal

360-day “years,” and 1 through 30 successive 20-“year” periods. The values in this

last table include an epoch correction computed for 20 (ideal) “years” after the epoch

date of the Karan. akutūhala: i.e., the body’s epoch longitude as given in Karan. a-

kutūhala 1.4–6 and 13, plus an amount equal to its mean daily motion multiplied

by 360× 20 [Mishra 1991, 5, 11; Rao and Uma 2008, S4, S12]. Thus, after entering

into each of the appropriate mean motion tables with D, M , Y and T , the user

simply adds up the four corresponding table entries (modulo 360◦) to get the mean

longitude for the body in question since epoch.

In one manuscript (MS S45) the argument values in each planet’s 20-“year”-

periods table are numbered 31–59 rather than 1–30, and its entries incorporate an

epoch correction equal to the Karan. akutūhala epoch longitude plus the mean daily

motion multiplied by 360 × 20 × 30. The apparent implication is that the tables

were expected (at least by the scribe of MS S45) to be used beginning at some time

nearly 600 years after the Karan. akutūhala epoch date.

It is rather striking that the Brahmatulyasāran. ı̄ procedure demands an ahargan. a

already converted from a date in actual Indian calendar units, such as synodic

months, thirtieths of a synodic month (tithis), and luni-solar years, to total civil

days. Evidently the conversion procedure “stated in the handbook” (presumably
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Figure 1: Tables of increments to the mean position
of the sun for a given number of days,
“months,” “years,” and 20-“year” periods (en-
titled raviks.epakāh. “Additive (positions) of the
sun”) elapsed since the Karan. akutūhala’s epoch
(MS SMB f. 1r).

Karan. akutūhala 1.2–3 [Mishra 1991, 2; Rao and Uma 2008, S1]) can simply be

prescribed rather than explained. The resulting total must then be apportioned

into the appropriate multiples of 7200, 360, 30 and single civil days for convenience

in computing the corresponding mean motion increments. These mean motion tables

with their idealized “months” and “years” in round numbers of civil days are in fact

more reminiscent of some Islamic z̄ıj calendar conversion tables than of the standard

ahargan. a algorithms in Sanskrit texts.2

Verse Three: Mean Planetary Positions and their Corrections

madhyāh. svadeś̄ıyakhagā bhaveyur

deśāntaren. ābda x [x] x rāma- ||
b̄ıjena yuktā gan.akais tataś ca

spas.t.āh. kriyante phalayugmakena || 3 ||

2 The Brahmatulyasāran. ı̄’s allotment of the standard integer numbers of civil days in the “month”

and the “year” resembles in particular the tradition of z̄ıjes using Persian and/or Ptolemaic years in

blocks of 20, such as those of al-Mans.ūr and al-Battān̄ı. Other z̄ıjes including those of al-Hāsib and

al-Khāzin̄ı commonly use hijra calendar months and blocks of 30 (hijra) years; see, e.g., [Kennedy

1956, 145–167].
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The mean [longitudes] should become [longitudes of] the planets for one’s own locality

[when] adjusted by the longitude-correction [and] by the rāmab̄ıja [correction] with the

annual [correction?]. And from [those], the true [longitudes] are made by the calculators

by means of the two equations [i.e., manda and ś̄ıghra equations].

Verse Analysis

Meter: upajāti.

The manuscript appears to have for the second pāda of the verse the metrically

and logically deficient deśāntaren. āprabhatharāma (see Figure 2), which we hypoth-

esize originally enumerated the deśāntara, abdab̄ıja and rāmab̄ıja corrections. But

we cannot fully reconstruct the allusion to the abdab̄ıja (one possibility would be

deśāntaren. ābdaviliptarāma).

Figure 2: Manuscript rendering of verse 3, pāda 2 (MS S29 f. 6r).

Technical Analysis

This verse describes various modifications to the computed mean positions. The first

adjusts them from the default locality at the notional Indian zero-point of latitude

and longitude, i.e., the ideal position of Laṅkā at the intersection of the equator

and the prime meridian, to the terrestrial longitude of one’s own locality by means

of the so-called deśāntara or longitudinal difference correction. In Karan. akutūhala

1.14–15, Bhāskara declares the deśāntara to be this longitudinal difference measured

in yojanas, multiplied by the daily motion of the planet in question in arcminutes

(kalās) per day and divided by 80 [Mishra 1991, 12; Rao and Uma 2008, S13]. (The

factor of 80 can be explained as follows: The circumference of the earth is taken to be

4800 yojanas, which are passed over in each revolution of the celestial equator during

one day or 60 ghat.ikās [Plofker forthcoming, ch. 1]. Therefore, the revolution takes
60

4800
=

1

80
ghat.ikās per yojana of terrestrial longitude at the equator.) The result

is measured in vikalās or arcseconds and is to be applied positively or negatively at

longitudes west or east of the prime meridian, respectively.

As we reconstruct it, the Brahmatulyasāran. ı̄ here mentions a second correction

also discussed by Bhāskara (Karan. akutūhala 1.16 [Mishra 1991, 13; Rao and Uma

2008, S13]), the abdab̄ıja (literally “yearly correction”). This serves merely to correct

computational inaccuracies in the standard mean motion values based on the more

precise long-period parameters of Brāhmapaks.a astronomy [Plofker forthcoming,

ch. 1].

No abdab̄ıja is applied to the mean sun, Jupiter or Saturn. For each of the
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other bodies, the number of years elapsed since the epoch (gatābda) is divided by

an appropriate integer to produce a correction in seconds of arc.

The derivation and purpose of rāmab̄ıja corrections to the epoch mean longi-

tudes are still not fully explicated. They appear to be a post-Bhāskara innovation

attributed to one Rāma, and are attested in slightly different form in another au-

thority named Rāmacandra [Pingree 1996, 168–171].

Verse Four: Interpolation Procedure

kendrasya doram. śamitís ca kos.t.e

bhuktam. tadagram. parabhogyakam. ca ||
kalādikam. tadvivarāhatam. tu

s.as.t.yuddhr.tam. bhuktakamānakena || 4 ||

The amount in degrees of the arc of the [desired] anomaly (kendra) is [entered] in the

table. [The table entry for the degree] before that is the “elapsed” (bhukta) and [then]

the following “future” (bhogya). The minutes etc. [of the argument] are multiplied by

the difference of those [i.e., the two table entries] and divided by sixty, [and the result

increased] by the amount of the “elapsed.”

Verse Analysis

Meter: upajāti.

Technical Analysis

This verse appears to be nothing more than an explanation of linear interpolation

between two values of a function tabulated for each successive integer degree of

its argument. The argument in the remaining tables of the Brahmatulyasāran. ı̄ is

typically the planet’s orbital displacement or “anomaly” (kendra; see the technical

analysis for the following verse).

Two standard technical terms relating to interpolation are introduced: the bhukta

or “past” value refers to the table entry for the integer degree immediately preceding

the desired argument, and the bhogya or “future” value to the entry for the degree

immediately after it.3 The concise instructions prescribe scaling the fractional dif-

ference between the desired argument value and the next lower integer degree by the

difference between the two neighbouring table entries to give the required increment

3 A similar verse using the same two terms for the differences between a given argument value and

the two table entries surrounding it is used to explain linear interpolation within a crude sine table

in Karan. akutūhala 2.6 [Mishra 1991, 21; Rao and Uma 2008, S17–S18].
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for the interpolated function value:

desired value = bhukta +
bhogya − bhukta

60
· (fractional part of desired argument)

Verse Five: Application of the manda-Correction

yuktam. bhaven mandaphalam. grahān. ām.
svarn.am. kramān mes.atulādikendre ||
grahasya bhuktir vivarāhatam. ca

s.as.t.yuddhr.tam. kendravaśād dhanarn.am || 5 ||

The manda-equation (mandaphala) of the planets should be applied positively or neg-

atively [to the mean longitude of the planet] when the anomaly (kendra) is in [the

semicircle] beginning with Aries or Libra respectively [i.e., when the anomaly is between

0 and 180 or between 180 and 360 degrees]. The velocity of a planet [is modified by

the manda-correction as follows: the fractional part of the desired value of anomaly],

multiplied by the difference [between successive entries in the table of velocity-correction

(gatiphala)] and divided by sixty, [is the increment to the appropriate tabulated gati-

phala entry. The resulting gatiphala is applied to the mean daily velocity] positively or

negatively according to [whether] the anomaly [is in quadrants II and III or quadrants

IV and I respectively].

Verse Analysis

Meter: upajāti.

Technical Analysis

In order to determine the true longitudes of the planets, their mean longitudes need

to be adjusted for the inequalities of their orbits. The manda “slow” and ś̄ıghra

“fast” equations mentioned in verse 3 are used to correct the mean position of a

planet to its true one based on its anomaly or angular displacement in longitude

from the direction of the corresponding apogee. The sun and moon have only one

anomaly each and thus are not ś̄ıghra-corrected.

The present verse describes corrections due to the manda-anomaly, i.e., the dif-

ference between the mean position of the planet λ̄ and that of its manda-apogee

λAM
. This corresponds to the assumption, in an eccentric geocentric orbital model

such as the one illustrated in Figure 3, that the orbiting body is moving with uni-

form velocity upon a circle whose center is displaced from the earth by an amount

of eccentricity rM . This displacement produces changes in speed and position over

the course of the body’s revolution that are qualitatively similar to the effect of an

elliptical orbit with the earth at one focus. The manda-equation µ (mandaphala)

is the displacement in ecliptic longitude from the planet’s mean position resulting
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from the manda-anomaly κM = λAM
− λ̄.

As shown by the diagram on the left in Figure 3, the correction µ (represented

by the angle ̸ P̄OP between the mean position P̄ and the corrected position P as

viewed from the earth) is zero when the planet is on the apsidal line defined by its

apogee-point and the earth: that is, when its anomaly is 0 or 180 degrees. The

mandaphala values are symmetric about the absolute maximum that occurs when

the anomaly is either 90 or 270 degrees; they are positive (meaning that the planet’s

corrected longitude will be larger than its mean longitude) when the anomaly falls

in the first two quadrants, and negative thereafter.

A

P6

P6

P4

P5

P5

P2

P4

P2

eccentric circle

concentric circle

C

P1

P3

O

P1

P3

M

increasing

longitude

C

P1

O

P1μ
κ
M

κ
M

Figure 3: The manda correction interpreted geometrically
via an eccentric orbit. Left: The point O is the
observer’s position at the center of the concen-
tric circle on which the mean planet P̄ moves, C
the center of the eccentric representing the actual
path of the planet P , the distance OC the amount
of eccentricity rM , and AM the position of the
manda-apogee from which the anomaly ̸ AMOP̄
or κM is computed. Right: The manda-equation
µ is computed trigonometrically from the right
triangle with manda-hypotenuse HM = OP .

The diagram on the right in Figure 3 shows the trigonometric definition of the

mandaphala µ based on the right triangle containing acute angle µ, its opposite side

SinκM · rM/R, and its adjacent side R ± CosκM · rM/R (where R is the radius

of the Sine-table and the capitalized Sine function is just R times the modern sine

function with unit radius). The ratio of the opposite side to the hypotenuse then

gives (bearing in mind that the modern cosine function can be either positive or
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Figure 4: First half of the table in MS S45 f. 6v for deter-
mining the sun’s manda-equation.

negative, so the ± symbol becomes unnecessary):

sinµ =
SinκM · rM

R√(
SinκM · rM

R

)2
+
(
R± CosκM · rM

R

)2
=

rM sinκM√
(rM sinκM )2 + (R+ rM cosκM )2

. (1)

Figure 4 shows the sun’s manda-equation table from MS S45, with the following

header text:

mandaphalam. adho ’ntaram. tadadho gatiphalam. || ravimandaphalāni || adho gati-

phalam. || ravimandoccam. 2 | 18 | 0 | 0 kendravaśād dhanarn. am. ||
The manda-equation; below, the difference; below that, the gatiphala. The manda-

equations of the sun. Below, the gatiphala. The manda-apogee of the sun (is) 2 (zodiacal

signs) 18 (degrees) 0 (minutes) 0 (seconds); (the manda-equation is) positive or negative

according to (the amount of) the anomaly.

The longitude λAM
of the sun’s manda-apogee, 2s18◦ or 78◦ total, is the value stated

in Karan. akutūhala 2.1 [Mishra 1991, 18; Rao and Uma 2008, S15]. (Because most

of the planets’ manda-apogees move so slowly, their change of position vAM
over a

few hundred years or so may be neglected.) The first row in each horizontal segment

of the table contains the degree of manda-anomaly as the table argument, running

from 0 to 90. The second row is the manda-equation, whose maximum value at 90◦

of anomaly is 2◦ 10′ 54′′.
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Figure 5: The sun’s manda-equation in degrees versus
degrees of manda-anomaly, as computed via
Karan. akutūhala 2.9–10 (blue line), and its tab-
ulated values in Brahmatulyasāran. ı̄ MS S45 f. 6v
(red dots).

The graph in Figure 5 indicates that its tabulated values, between which the

user is instructed to interpolate linearly, correspond very closely to the algorithm

prescribed in Karan. akutūhala 2.9–10 [Mishra 1991, 23; Rao and Uma 2008, S19]. It

approximates the manda-equation by the Sine of the manda-anomaly scaled to the

maximum value of µ [Plofker forthcoming, ch. 2]. Since the Karan. akutūhala gives

Sine values only for integer multiples of 10◦ and interpolates linearly between them,

the resulting function comes out piecewise-linear over 10◦ intervals. Hence the third

row of the table shows the differences between successive entries in the second row

changing only at every tenth entry.

The table’s fourth row is the so-called gatiphala or velocity-correction of the sun,

beginning with the maximum value of 2,20 arcminutes and ending at the minimum of

0,13. The algorithm by which these gatiphala values were apparently determined ap-

proximates a more accurate function described in Siddhāntaśiroman. i 2.36–38 [Śāstr̄ı

1866, 52–53], which uses the Cosine of a planet’s manda-anomaly κM to produce

the sinusoidal variation of the velocity-correction:

v̄M = v̄ ± (v̄ − vAM
) · CosκM · (rM/R)

R
. (2)

The planet’s manda-corrected angular velocity v̄M will increase from its minimum

value when the planet is most distant, at the apogee, to equal its mean velocity v̄

when the anomaly is 90◦. It reaches its maximum at closest distance or perigee when

the anomaly equals 180◦, subsequently slowing down to its minimum again when

it returns to the apogee—hence the decrease of the tabulated gatiphala (absolute)

values to nearly zero at the end of the first (or third) quadrant of anomaly, and the
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Figure 6: The sun’s manda-derived velocity correction in
arcminutes versus degrees of manda-anomaly, as
computed via Karan. akutūhala 2.11–12 (blue line),
and a sample of its tabulated values in Brahma-
tulyasāran. ı̄ MS S45 f. 6v (red dots). The more ac-
curate smooth version of the correction-term func-
tion from Siddhāntaśiroman. i 2.36–38 (green line,
Equation 2) is shown for comparison.

requirement that they be applied positively to accelerate the mean velocity in the

perigee-half of the anomalistic circle but negatively to decelerate it in the apogee-

half.

The approximate formula stated in Karan. akutūhala 2.11–12 replaces the above

velocity-correction term with a scale factor multiplied by the difference between the

tabulated Sine values of the 10◦ interval in which the anomaly κM falls (this Sine-

difference very roughly approximates the Cosine in the exact formula) [Mishra 1991,

24; Rao and Uma 2008, S23–S24]. Since the rule does not call for interpolating

within that 10◦ interval, it amounts to a step function rather than a continuous one,

as illustrated in Figure 6.

Verses Six and Seven: Computing the ś̄ıghra-Correction; Iterated
Corrections

grahon.am uccam. ca phalam. rasādhikam.
cet sūryatah. śodhya lavādikam. kr.tam ||
bhāgāṅkasam. khyāgatakos.t.akam. tayoh.
kalādikam. śes.am. vivarāhatam. tat || 6 ||

s.as.t.yā vibhaktam. svam r.n.am. ca bhogyāt

kāryam. vih̄ınādhi[ka]tatkramen.a ||
ādau hi mandārdha [x] kena tasmāt
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samagram. [x x x] punah. punaś ca || 7 ||

[The longitude of] the apogee is diminished by [the longitude of] the planet. Having

subtracted the result from 12 [signs] if it is greater than 6, it is made into degrees etc.

[Subtract from this reduced ś̄ıghra-anomaly] the previous table entry for the number

[equal to its] number of degrees; the remainder [from the subtraction] of those two is

in arcminutes and so on. That is multiplied by the difference [between the previous

and the next table entries, and] divided by sixty. [The result is] applied [to the previous

entry] positively or negatively, according as that is respectively less or greater than the

next entry. At first, [the mean longitude is corrected] with half the manda-equation and

afterwards with the whole, repeatedly.

Verse Analysis

The meter is vam. śamālā in verse 6. The scansion of the final pāda of verse 6 is

wrong: where the pattern of gan. as should be either ta-ta-ja-ra or ja-ta-ja-ra, it is

ja-ma-sa-ya.

The intended meter of verse 7 is apparently upajāti, but the text is evidently

corrupt. The second pāda requires an interpolated syllable that is quite plausibly

restored as ka to reach the required total of eleven, but there is no equally obvious

way to emend the last two deficient pādas of ten and eight syllables respectively.

Technical Analysis

The second planetary longitude correction is the ś̄ıghra-equation σ, roughly corre-

sponding to the correction for synodic anomaly in western geocentric astronomy. It

accounts for the phenomena of planetary stations and retrogradation, heliocentri-

cally explained by the fact that the other planets as well as the earth are revolving

about the sun. Thus a planet seen from the earth as they pass in their orbits can

appear to pause and go backwards temporarily. Since the sun and moon do not ret-

rograde and thus do not have a ś̄ıghra-anomaly, as noted previously, this correction

applies only to the five star-planets.

The concept used in Indian astronomy to model this effect is a second anomaly

or ś̄ıghra-kendra κS measured from a notional point called the ś̄ıghra-apogee. Its

position coincides with that of the mean sun in the case of superior planets, and with

the planet itself in the case of inferior planets (for which the sun’s mean position

does duty as their mean longitude for the purpose of computing the anomaly).

The ś̄ıghra-anomaly κS is determined by subtracting the longitude of the planet

corrected by the manda-equation, or λ̄M , from that of its ś̄ıghra-apogee, λAS
. Since

the ś̄ıghra-apogee revolves about the earth faster than the mean planet does, the

planet periodically appears to go backwards while it is close to its opposition (or in

the case of an inferior planet, its inferior conjunction) with respect to the sun. Fig-

ure 7 qualitatively illustrates the ś̄ıghra for a superior planet, neglecting the effect of
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the manda: as the ś̄ıghra-anomaly angle goes from 0◦ to 180◦, the planet’s apparent

motion follows the dotted path, whose loops represent the apparent retrogradations.

Mean Sun

P

P

P

P

P

P

κS

κS

κS κS

Figure 7: The ś̄ıghra-correction for a superior planet. Left:
The ś̄ıghra-anomaly κS and the corresponding
correction are zero when the planet is in conjunc-
tion with the sun. Center: The direction of the
planet stays parallel to that of the sun, which is re-
volving faster than the mean planet on its orbit, so
the planet appears to slow down in its forward mo-
tion. Right: The continued motion of the mean
sun appears to drag the planet backwards, so that
it reaches the center of its retrograde motion in
opposition to the sun, with anomaly 180◦.

This cyclic “looping” means that the ś̄ıghra-equation values are symmetric about

the end of the second quadrant of anomaly. More precisely, they are given by the

formula stated in Karan. akutūhala 2.13 [Mishra 1991, 25; Rao and Uma 2008, 26],

which is analogous to that for the manda-correction defined in Equation 1 and

equivalent to the following expression:

Sinσ =
R · rS sinκS√

(rS sinκS)
2 + (R+ rS cosκS)

2
=

R · rS sinκS
HS

. (3)

Here, rS is the radius of the planet’s ś̄ıghra-epicycle while the so-called ś̄ıghra-

hypotenuse

HS =

√
(rS sinκS)

2 + (R+ rS cosκS)
2

extends from the planet’s true position to the earth. Since the Cosine of the ś̄ıghra-

equation is similarly given by

Cosσ =
R · (R+ rS cosκS)√

(rS sinκS)
2 + (R+ rS cosκS)

2
=

R · (R+ rS cosκS)

HS
, (4)
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we can write

sinσ =
rS sinκS√

(rS sinκS)
2 + (R+ rS cosκS)

2

=
rS sinκS√

rS2 sin2 κS +R2 + 2RrS cosκS + rS2 cos2 κS

=
rS sinκS√

rS2 + 2RrS cosκS +R2

=
rS sinκS

HS
,

(5)

and likewise

cosσ =
R+ rS cosκS√

rS2 + 2RrS cosκS +R2
=

R+ rS cosκS
HS

. (6)

It is clear, as the tables of the planets’ ś̄ıghra-equations illustrate, that σ is zero

when the anomaly is zero (at conjunction or superior conjunction for a superior or

inferior planet respectively) or 180◦ (opposition/inferior conjunction). To find where

the maximum σ-values occur, we set the derivative of σ = arcsin(sinσ) to zero and

solve for κS :

d

d κS
(arcsin(sinσ)) =

d

d κS

(
arcsin

(
rS sinκS√

rS2 + 2RrS cosκS +R2

))

=
d

d κS

(
arcsin

(
rS sinκS

HS

))

=
1√

1− rS
2 sin2 κS

HS
2

·
(rS cosκS)(HS)−

rS sinκS(−2RrS sinκS)

2HS

HS
2

=

 1√
1− rS

2 sin2 κS

HS
2

 ·


(rS cosκS)

√
rS2 + 2RrS cosκS +R2 − rS sinκS(−2RrS sinκS)

2
√

rS2 + 2RrS cosκS +R2

HS
2
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=
1√

HS
2 − rS

2 sin2 κS

HS
2

· rS cosκS(HS
2) +RrS

2 sin2 κS

(HS
2)HS

=

(
HS√

rS2 cos2 κS + 2rS cosκS +R2

)
·(

rS
3 cosκS + 2RrS

2 cos2 κS +R2rS cosκS +RrS
2 sin2 κS

(HS
2)HS

)

=
rS

3 cosκS +RrS
2 cos2 κS +R2rS cosκS +RrS

2√
(rS cosκS +R)2 · (HS

2)

=
(rS cosκS +R)(rS

2 +RrS cosκS)√
(rS cosκS +R)2 · (rS2 + 2RrS cosκS +R2)

=
rS

2 +RrS cosκS
rS2 + 2RrS cosκS +R2

.

(7)

When σ is at its maximum, this reduces to

0 =
rS

2 +RrS cosκS
rS2 + 2RrS cosκS +R2

= rS
2 +RrS cosκS

= rS +R cosκS

cosκS = −rS
R

.

Since the ratio of the two radii is between about 0.1 and 0.7, depending on the

planet, this tells us that the maximum ś̄ıghra-equation occurs when the anomaly

attains a certain value in the second quadrant (and again when the anomaly is zero

minus that value, in the third quadrant). Thus the linear interpolation procedure

for the ś̄ıghra-tables must specify whether the interpolated increment of equation is

to be added to or subtracted from the previous tabulated value, according as the

equation is increasing or decreasing respectively.

Figure 8 shows a selection of the Brahmatulyasāran. ı̄’s tabulated ś̄ıghra-function

values for Jupiter, and Figure 9 compares them to the results of the Karan. akutū-

hala’s formulas. It is not quite clear why the compiler of the tables bothered to

tabulate the values of the ś̄ıghra-hypotenuse HS , as none of the rules specified in

the Brahmatulyasāran. ı̄ requires the user to employ it; however, the values shown

confirm that the Brahmatulyasāran. ı̄ follows the Karan. akutūhala in using R = 120

for the trigonometric radius.
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Figure 8: Part of the ś̄ıghra-equation table for Jupiter in
MS S45 f. 13r, showing the maximum value of
the equation σ(◦) at 100◦ of anomaly, outlined in
red. The second row of the table contains the
differences ∆σ(′) between the successive entries,
and the third row the corresponding values of the
hypotenuse HS .

The procedure in Karan. akutūhala 2.14 specifies that the initial equations for both

manda- and ś̄ıghra-corrections should be halved before applying them to the planet’s

longitude—but only in the case of Mars [Mishra 1991, 26; Rao and Uma 2008, S28].

This Brahmatulyasāran. ı̄ algorithm, on the other hand, seems to generalize the initial

halving of the manda-equation to all the planets. It may be that some of the missing

syllables that make the verse metrically deficient originally specified Mars, but we

have not taken it upon ourselves to restore them.

Verses Eight and Nine: Application of the ś̄ıghra-Velocity Correc-
tion; Retrograde Motion and Combination of Corrections

drākkendrabhuktir vivaren.a nighnā

s.as.t.yuddhr.tam. svam. ca phalasya vr.ddhau ||
hrāsa r.n.am. mandagater grahān. ām.
kr.tām iti syāt sphut.akhet.abhuktih. || 8 ||

yadā na śuddhā tu vilomaśodhyā

śes.es.u vakrā bhavat̄ıha bhuktih. ||
bhaumādikāh. karmacatus.t.ayena
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Figure 9: Functions for 0–180◦ of ś̄ıghra-anomaly for
Jupiter, as represented by the Karan. akutūhala’s
algorithms (blue line) and sample values tabu-
lated in Brahmatulyasāran. ı̄ MS S45 ff. 12v–13r
(red dots; see Figure 8). Left: The ś̄ıghra-
equation σ in degrees. Right: The ś̄ıghra-
hypotenuse HS in radial units (R = 120).

kujas tu yāvat sthiratām upeti || 9 ||

The velocity of the ś̄ıghra-anomaly is multiplied by the difference [between successive

ś̄ıghra-equation values corresponding to that ś̄ıghra-anomaly] and the quotient with sixty

[is applied] positively with respect to the manda[-corrected] velocity of the computed

planets when there is increase of the equation [in successive tabulated values], negatively

when there is decrease. Thus the velocity of the true planet should be [computed].

When [the modified ś̄ıghra-anomaly velocity] is not [capable of being] subtracted [from

the manda-corrected mean velocity, it] is to be reverse-subtracted. The velocity here

becomes retrograde in [the amount of] the remainders. The [star-planets] beginning

with Mars [are corrected] by four procedures, but Mars [itself] until [it] attains fixedness.

Verse Analysis

Meter: upajāti.

The text of the third pāda of verse 8 is very unclear and we have taken

several liberties with its interpretation. The manuscript reads hrāso r.n. am.
mam. dārdhagatagrahān. ām. , which is both hypermetric and ungrammatical, as well

as difficult to make sense of. We speculate that hrāso resulted from a faulty sandhi

correction of hrāsa for locative absolute hrāse before r.n. am. , and that the scribe may

have written mam. dārdha in unconscious imitation of the phrase mam. dārdhakena

from verse 7 that appears just above it in the preceding line.
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Technical Analysis

The algorithm in verse 8, unlike those in the previous verses, diverges markedly

from its counterpart in the Karan. akutūhala (2.14–2.16ab).4 The Brahmatulyasāran. ı̄

determines and applies the velocity correction due to the ś̄ıghra-anomaly to produce

the planet’s true velocity v by a linear interpolation, as follows:

v = v̄M + vκS · ∆σ(′)

60
. (8)

Here, v̄M is the planet’s mean velocity v̄ corrected by the manda-gatiphala from

Equation 2 in the discussion of verse 5; vκS is the so-called velocity of the ś̄ıghra-

anomaly, i.e., the difference between two successive values of the ś̄ıghra-anomaly

κS = λAS
− λ̄M ; and ∆σ is the difference between two successive tabulated values of

the ś̄ıghra-equation σ. We take ∆σ to be positive when σ is increasing and negative

when σ is decreasing, so we write “+” instead of “±” in the velocity formula.

The “anomaly velocity” vκS can be shown to be equivalent to (vAS
− v̄M ), the

difference between the velocity vAS
of the ś̄ıghra-apogee (which, unlike that of the

much slower manda-apogee, cannot be assumed to be zero) and that of the manda-

corrected planet. To wit: Understanding each of these velocities as simply a change

4The Karan. akutūhala’s procedure is stated in the following verses which are differently arranged

and numbered in different editions [Mishra 1991, 26–27; Rao and Uma 2008, S197]:

tadutthamāndena calena madhyaś

cet sam. skr.tah. spas.t.ataras tadā syāt ||
dal̄ıkr.tābhyām. prathamam. phalābhyām.

tato ’khilābhyām. tu punah. kujas tu ||
gateh. phalenaiva tu sam. skr.tā yā

madhyā gatir mandagatir bhavet sā ||
grahasya mandasphut.abhuktivarjitā

svāś̄ıghrakendrasya gatir bhavet sā ||

drākkendrabhuktir gun. itāśucāpa-

bhogyajyayā khābdhigun. ā ca bhaktā ||
saptaghnakarn. ena caloccabhukteh.

śodhyāvísis.t.am. sphut.akhet.abhuktih. ||
yadā na śuddhā vipar̄ıtaśodhyā

śes.am. bhaved vakragatis tadān̄ım ||
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between two successive positions in longitude with superscripts i and ii, we write(
λAS

ii − λ̄ ii
M

)
−
(
λAS

i − λ̄ i
M

)
=
(
λAS

ii − λAS

i
)
−
(
λ̄ ii
M − λ̄ i

M

)
= vAS

− v̄M = vκS .

Moreover, since the true planetary longitude λ is given by

λ = λ̄M + σ ,

and we can regard velocity as just the derivative of longitude with respect to time,

the true velocity v can be defined thus:

v =
d

dt
(λ) =

d

dt
(λ̄M + σ) =

d

dt
(λ̄M ) +

d

dt
(σ)

=
d

dt
(λ̄M ) +

d

dt

(
arcsin

(
rS sinκS

HS

))
=

d

dt
(λ̄M ) +

d

dκS

(
arcsin

(
rS sinκS

HS

))
· d

dt
(κS)

= v̄M +
d

dκS
(σ) · vκS ,

(9)

where HS as before denotes the ś̄ıghra-hypotenuse. Recalling that ∆σ(′)/60 =

∆σ(◦), we can see that the final expression in Equation 9 is identical to the formula

for v stated in Equation 8, up to the equivalence of the derivative
d

dκS
(σ) with its

finite-difference approximation ∆σ.

The corresponding rule for true velocity v in Siddhāntaśiroman. i 2.39 prescribes

[Śāstr̄ı 1866, 54]:

v = vAS
− vκS · Cosσ

HS
. (10)

If we substitute vAS
= v̄M + vκS into this formula, we obtain a rule identical to that

of the Brahmatulyasāran. ı̄ in Equation 8 except that it appears to use a different

scale factor for the anomaly velocity vκS :

v = v̄M + vκS − vκS · Cosσ
HS

= v̄M + vκS

(
1− Cosσ

HS

)
. (11)

In fact, the two multipliers in Equations 8 and 11 are mathematically equivalent, as

we show by further manipulating the expression for the ś̄ıghra-equation difference
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derived in Equation 7:

∆σ ≈ d

d κS
(arcsin(sinσ)) =

rS
2 +RrS cosκS

rS2 + 2RrS cosκS +R2

=
rS

2 + 2RrS cosκS +R2 − (RrS cosκS +R2)

rS2 + 2RrS cosκS +R2

=
HS

2 − (RrS cosκS +R2)

HS
2

= 1− R(R+ rS cosκS)

HS
2 = 1− R

HS
· R+ rS cosκS

HS
= 1− R

HS
· cosσ

= 1− Cosσ

HS
.

It is not clear exactly how the relationship between these two attested forms of

the scale factor, ∆σ(◦) and

(
1− Cosσ

HS

)
, was understood by Bhāskara and his

successors. It could easily have been noticed that their behavior is qualitatively

very similar, as both are zero when the ś̄ıghra-equation is at its maximum and have

their largest absolute value when the planet is at perigee: i.e., σ = 0 so Cosσ = R

and HS takes its minimum value R− rS .

The Karan. akutūhala modifies the Siddhāntaśiroman. i formula to the following

expression:

v = vAS
− vκS · Sine-difference(σ)

HS
· 40
7

. (12)

This algorithm, like its counterpart for the manda-derived velocity correction dis-

cussed in verse 5 (Equation 2), merely replaces the Cosine of the equation σ by the

appropriately scaled Sine-difference for the 10◦ interval in which σ falls, thus:

Cosσ ≈ Sine-difference(σ) ·R
max. Sine-difference

=
Sine-difference(σ) · 120

21
=

Sine-difference(σ) · 40
7

.

The graph on the left in Figure 10 compares the exact and approximate versions

of the velocity-correction term from Equations 11 and 12 respectively. (Note that

the sharp discontinuities in the approximation occur where the ś̄ıghra-equation σ

changes its 10◦ interval). The graph on the right compares the Siddhāntaśiroman. i

version to the values in the Brahmatulyasāran. ı̄.

We presume that the author of the Brahmatulyasāran. ı̄ algorithm, or perhaps an

earlier innovator from whom he copied the technique, was familiar with the Karan. a-

kutūhala formula for correcting the planetary velocity. This is corroborated by the

statement of the condition for retrograde velocity in verse 9, which is clearly heavily

indebted to the corresponding Karan. akutūhala verse.
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Figure 10: The ś̄ıghra velocity correction in minutes per
day for 0–180◦ of ś̄ıghra-anomaly for Jupiter:
Left: The Siddhāntaśiroman. i formula (green)
and the Karan. akutūhala approximation to it
(blue). Right: The Siddhāntaśiroman. i formula
compared to a sample of the values tabulated in
Brahmatulyasāran. ı̄ MS S45 ff. 12v–13r (red dots)
and their reconstruction (purple line).

The “four procedures” somewhat vaguely alluded to in closing are the alternat-

ing manda- and ś̄ıghra-corrections specified in Karan. akutūhala 2.14 (see note 4),

following Siddhāntaśiroman. i 2.34cd–36ab [Śāstr̄ı 1866, 52]. Namely, the mean po-

sition is to be adjusted first by the appropriate manda-equation and then by the

ś̄ıghra-equation corresponding to the manda-adjusted position, after which the pro-

cess is repeated. In the case of Mars alone, each equation should be halved when

first applied, but not thereafter. The Siddhāntaśiroman. i prescribes iteration of the

alternating corrections for all star-planets until their longitudes are fixed.

Verse Ten: Correction for Mars’ manda-Apogee

bhaumāśukendrasya padasya jāta-

gamyasya bhāgāh. phalavat phalam. ca

kul̄ıra[na]krādigate svakendre

h̄ınādhikam. spas.t.am asr.ṅmr.dūccam || 10 ||

The degrees of the past [or] future [part, whichever is smaller,] of the quadrant of the

ś̄ıghra-anomaly of Mars are like [the argument of an] equation [in the table of manda-

apogee correction for Mars]. And the [corresponding] equation, when its own [́s̄ıghra-]

anomaly is in Cancer or Capricorn, is [respectively] subtracted or added [to make] the

manda-apogee of Mars accurate.
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Verse Analysis

Meter: upajāti.

The manuscript has mam. dasya instead of padasya, suggesting that a scribe at

some point misread ma for pa and then added an anusvāra to obtain a familiar term

at the expense of the meter (and the sense). We have supplied the first syllable of

the word nakra (or perhaps it was originally makra in error for the better-known

synonym makara “crocodile, sea-monster”?) for the zodiacal sign Capricorn.

Technical Analysis

As we reconstruct it, the Brahmatulyasāran. ı̄ verse is largely borrowed from the

corresponding Karan. akutūhala rule [Plofker forthcoming, ch. 2].5 It amounts to

multiplying the arc between the ś̄ıghra-anomaly of Mars and the closest integer

multiple of 90◦ by the scale factor 3
20 or 9 arcminutes per degree. The result is

applied to displace the longitude of Mars’ manda-apogee backwards or forwards

in the ecliptic, depending on whether the planet is in the half-circle of anomaly

centered on opposition or in the one centered on conjunction, respectively. At its

conjunction, opposition or quadrature there is no correction to the manda-apogee,

while the correction is maximum (0; 9◦ ×45 = 6; 45◦) when the anomaly is an odd

multiple of 45◦.

Qualitatively, this adjustment has the effect of moving the manda-apogee towards

the planet at the octants around conjunction, which decreases the speed of its mo-

tion, and away from the planet at the octants around opposition, which increases its

speed (or strictly speaking slows down its retrograde motion). Bhāskara evidently

derived the rule from an algorithm in the Siddhāntaśiroman. i in which the scale

factor

(
6; 40

Sin 45

)
is applied to the Sine of the past or future arc of the quadrant of

ś̄ıghra-anomaly. This normalizes the absolute value of the manda-apogee correction

term to a maximum of 6; 40◦ at the octants of ś̄ıghra-anomaly, rather than 6; 45◦ as

in the Karan. akutūhala/Brahmatulyasāran. ı̄ version.

Bhāskara’s commentary in the Siddhāntaśiroman. i says of this correction merely

5 Karan. akutūhala 2.5 [Mishra 1991, 20; Rao and Uma 2008, S17] (compare Siddhāntaśiroman. i

2.24–25 [Śāstr̄ı 1866, 46–47]):

bhaumāśukendre padayātagamya-

svalpasya liptā khakhavedabhaktāh. ||
labdhām. śakaih. karkimr.gādikendre

h̄ınānvitam. spas.t.am asr.ṅmr.dūccam ||5||
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Figure 11: The table of the apogee-longitude correction for
Mars for argument values 0–45◦, beginning in the
center of the page (MS S45 f. 7v).

atrāgama eva pramān. am, i.e., it is the quantity prescribed in the received tradition.

Its origin and efficacy are discussed in more detail in Duke [2005]. Figure 11 shows

its tabulated values as they appear in MS S45.

Colophon

iti brahmatulyasāran. ı̄́slokāh. ||

Thus, the ślokas of the Brahmatulyasāran. ı̄.

Post-Colophon: Astrological Procedure

candrarāśau kalām. sarve dvādaśair bhāgam āharet ||
yātrodvāhe śubhe kārye candrāvasthāh. parityajet ||1||

pravāsanas.t.āmr.tatājayākhyā

hāsyāratikr̄ıd. itasuptabhuktāh. ||
jarāhvayāh. kampitasusthitam. ca

mes.ādimukhyā himagor avasthāh. ||1||

In every zodiacal sign of the moon, one should divide the minute [and?] degree [? of

longitude] by twelve. [The remainder gives the number of the lunar avasthā or “status.”]

When a journey or marriage is to be made auspicious, the avasthā of the moon should

be disregarded.
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[Those] called journey, loss, immortality, victory; laughter, delight, play, sleep, eating;

[that] called old age, and trembling [and] comfort; are the states (avasthās) of the moon

starting from the beginning of Aries.

The word avasthā is a technical term in Sanskrit astrology meaning “status” or

“situation”; the avasthās are thought to predict certain events or activities indicated

by their names. Our author seems to derive the avasthā number by the following

method, of which variant forms are still practiced in modern popular jyotish or

Indian astrology. Namely, the numbers of the degree and minute of the zodiacal

sign occupied by the moon are arithmetically combined in some fashion not entirely

clear from the rule as stated, and the resulting integer is divided by 12. Evidently

it is the remainder from this division that designates the number of the avasthā.

Another list of twelve lunar avasthās, mostly with quite different names, is sup-

plied in the astrological work Phalad̄ıpikā of Mantreśvara (ca. fifteenth century or

later?).6 Also unlike our present author, Mantreśvara assigns the lunar avasthā at

the desired moment of nativity, query, etc., according to the integer part of the quo-

tient from dividing the moon’s position in the cycle of constellations (interpreted in

the units vighat.ikās of which there are 3600 in the cycle) by 300.

Scribal Signature

iti likhitam. malūkacandren.a ||

Thus, (this text) was written by Malūkacandra.
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Appendix: Edition of the Brahmatulyasāran. ı̄ verses

f. 6r S29| ao\ ôFgZ⇤fAy nm, ;

n(vA v•Bn⌃dn\ tdn� gopAlA\E†pîíy\
‚A(vA ôFg� zvA»to ùhEn�f\

h
d⇥ ´A

i
ç� m⇤vAD� nA ;

EsàA⌃t⇤q� yToƒK⇤crEvED
h
<y

i
, -p£ko£\ m� h� -

5m�@y-p£EvBAgto g}hgZA(k� v⇤� EdnOGAdhm̂ ; 1;

k⇥ (vAdO krZoƒvAsrgZ\ Ef£{, s� „£A(mEB -
BA�>y\ KAE`n 30 Emt{rvAÿkEmd\ s� y{� 12 Ev�BA>y\ p� n, ;
lND\ Ev\fEt 20 EBB�j⇤dT ct� ,f⇤qA¨s\‚A D�}v\
a¨A-t⇤ EmEltA, -vko£kgtA l¨AngyA◆ KgA, ; 2;

10m@yA, -vd⇤fFyKgA Bv⇤y� -
d⇤�fA⌃tr⇤ZANd x

⇥
x

⇤
x rAm - ;

f. 6v S29bFj⇤n y� ƒA gZk{-ttñ |

-p£A, Eáy⌃t⇤ Ply� `mk⇤n ; 3;

k⇤⌃d̋-y dor\fEmEtñ ko£⇤
15B� ƒ\ tdg}\ prBo`yk\ c ;

klAEdk\ tEívrAht\ t�
q �̃ à⇥ t\ B� ƒkmAnk⇤n ; 4;

3 �vAD� nA ] �vAç� nA S29 4 ko£\ ] ko£o S29 7 �vAÿk� ] �vA(mk�S29 Ev�� ] Ev� S29

10–11 �y� d⇤fA⌃tr⇤ZA˛BTrAm S29 14 ko£⇤ ] ko£\ S29 15 �g}\ prBo`yk\ ] �g}prBo`y\k\ S29



32 Clemency Montelle and Kim Plofker SCIAMVS 16

y� ƒ\ Bv⇤⌃m⌃dPl\ g}hAZA\
-vZ◆ ámA⌃m⇤qt� lAEdk⇤⌃d̋⇤ ;
g}h-y B� EƒEv�vrAht\ c
q �̃ à⇥ t\ k⇤⌃d̋vfAànZ�m̂ ; 5;

5 g}hoZm� Œ\ c Pl\ rsAEDk\
c⇤(s� y�t, fo@y lvAEdk\ k⇥ tm̂ ;
BAgA¨s\HyAgtko£k\ tyo,
klAEdk\ f⇤q\ EvvrAht\ tt̂ ; 6;

q˜A EvBƒ\ -vm⇥ Z\ c Bo`yA -
10 (kAy◆ EvhFnAED

h
k

i
t(ám⇤Z ;

aAdO Eh m⌃dAD�⇥x⇤k⇤n t-mA -
(smg}\ ⇥x x x

⇤ p� n, p� nñ ; 7;

d̋A√⇤⌃d̋B� EƒEv�vr⇤Z EnÕA
q �̃ à⇥ t\ -v\ c Pl-y v⇥ àO ;

15 †As �Z\ m⌃dgt⇤g}�hAZA\
k⇥ tAEmEt -yAt̂ -P� VK⇤VB� Eƒ, ; 8;

ydA n f� àA t� Evlomfo@yA
f⇤q⇤q� váABvtFh B� Eƒ, ;

5 g}hoZ� ] g}hon� S29 13 �B� EƒEv�� ] �B� EƒEv� S29 15 †As �Z\ ] †Aso �Z\ S29 m⌃dgt⇤g}�� ] m⌃dAà�gt⇤g}�
S29
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BOmAEdkA, km�ct� £y⇤n
k� j-t� yAvE(-TrtAm� p⇤Et ; 9;

BOmAf� k⇤⌃d̋-y pd-y jAt -
gMy-y BAgA, Plv(Pl\ c ;

5k� lFr
h
n
i
áAEdgt⇤ -vk⇤⌃d̋⇤

hFnAEDk\ -p£ms⇥ ¡⇥ d� Œm̂ ; 10;

iEt b}út� SysArZFöokA, ;

c⌃d̋rAfO klA\ sv⇤� íAdf{BA�gmAhr⇤t̂ ;
yA/oíAh⇤ f� B⇤ kAy⇤� c⌃d̋Av-TA, pEr(yj⇤t̂ ; 1;

10˛vAsn£Am⇥ ttAjyAHyA
hA-yArEtáFEXts� ÿB� ƒA, ;
jrAüyA, kEMpts� E-Tt\ c
m⇤qAEdm� HyA Ehmgorv-TA, ; 1;

iEt ElEKt\ ml� kc⌃d̋⇤Z ;

2 �m� p⇤Et ] �m� p{Et S29 3 pd-y ] m\d-y S29 6 �s⇥ ¡⇥ d� Œm̂ ] �s⇥ Mm⇥ d� Œ\ S29 10 ˛vAs
1
n
2
£Am⇥ tA

3
jyA
4
HyA S29

11 hA-yA
5
r
6
EtáFEXt

7
s�
8
ÿB�
9
ƒA S29 12 jrA

10
üyA k\Ept

11
s� E-T

12
t\ c S29
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Montelle, C., Plofker, K., 2013. “Karan. akesar̄ı of Bhāskara: A 17th-century table
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