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I Introduction

Brahmatulyasarani is the name most often given to a set of tables (Sanskrit sara-
ni/ sarini, kosthaka) based on Bhaskara II’s astronomical handbook Karanakutuhala
or Brahmatulya (epoch 1183 CE), which in turn is a condensed and simplified adap-
tation of the same author’s treatise Siddhantasiromani. The name Brahmatulya
means “equal or corresponding to the Brahma,” i.e., the Brahmapaksa school of
astronomy adhered to by Bhaskara II, which follows the parameters of the Brahma-
sphutasiddhanta of Brahmagupta (628 CE). The Brahmatulyasarani tables record
Brahmapaksa-derived values of planetary mean motions with orbital and geograph-
ical corrections for computing their true motions for a given terrestrial location,
topics which are addressed in chapters 1-2 of the Karanakutuhala.

There are at least five extant manuscripts of the tables of the Brahmatulya-
sarani, some with occasional expository details in table headers and marginal notes.
A brief description of their contents has been published by Pingree [1968, 36-37]
based on the manuscripts described in tables 1-4 below; we have used also the
so-called Karanakutuhala-sarint in BORI 501/1895-1902. A critical edition of the
tables based on these five manuscripts is currently in preparation.

One of the Brahmatulyasarani manuscripts also contains (529, ff. 6r—6v) the only
currently known copy of ten verses explaining the use of the tables, plus a colophon
and two post-colophon verses on astrological matters; it was copied by an otherwise
unknown scribe named Maltkacandra. It consists of an invocation and prescribed
algorithms for accomplishing fundamental tasks of astronomy: computing planetary
mean longitudes measured along the ecliptic for a given date, correcting them for
orbital anomalies reckoned from the so-called manda and $ighra apogees (see the
technical analysis for verses 4-7) while interpolating linearly between tabulated val-
ues, and reducing arcs to the appropriate trigonometric quadrant. A few different
verse meters are used, primarily Sardulavikridita and upajati: several of the verses
draw on corresponding text in Karanakutuhala chapter 2 for their style and/or con-

tent.
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In the present paper, we provide a critical edition with transcription, translation,
and technical commentary for this very terse explanatory text.

I.1 The Relationship of the Brahmatulyasarant and the Karana-
kutuhala

There are a few known instances of second-millennium karana works giving rise to
eponymous table texts using the same epoch date, composed either by the kara-

na’s author or by a later compiler.!

The Brahmatulyasarani, although it does not
explicitly mention the Karanakutuhala or its author Bhaskara, conforms closely to
this pattern. The name Brahmatulya is well attested as one of the alternate ti-
tles of the Karanakutuhala [Pingree 1970-94, A4, 322], and as noted above, one of
the known Brahmatulyasarant manuscripts is actually titled Karanakutuhala-sarini.
The evident (though not entire) reliance of the Brahmatulyasarani on the Karana-
kutahala’s epoch date (discussed in section 1.2), and its allusion in verse 2 to an
unspecified algorithm “stated in the handbook” (karanokta), corroborate the infer-
ence that this kosthaka work is largely derived from an earlier karana and that the
karana in question is the Karanakutuahala. Close resemblances between the two texts
in the content and phrasing of some verses and table headers (described in detail in
section II) further confirm this conclusion.

Other than these examinations of some technical details concerning computa-
tional methods and textual borrowings (see also Montelle [2013]), we know almost
nothing about the historical context of the conversion process from karana to sarant,
i.e., when, where and by whom the Brahmatulyasarani was compiled as a separate
work. The possible identity of its author with one Nagadatta to whom is attributed
a Karanakutuhala-gata-sarant has been suggested, but not yet investigated [Pingree
1970-94, A5, 166].

I.2 A Description of the Sources

The contents and organization of each of the five known manuscripts of the Brahma-
tulyasarani are outlined in tables 1-5; the quantities they refer to are discussed in
section II. (Note that the abbreviation 20YP stands for “20-year-periods” and a
celestial longitude in the form a®b° represents a zodiacal signs of 30° each plus b
degrees within a sign.)

The manuscripts’ table data contain a few scraps of indirect evidence bearing
on the date of their compilation. In most of the mean motion tables, for instance,
initial mean positions correspond to the Karanakutuhala’s 1183 epoch. However,

L E.g., the karana and kosthaka both entitled Ramavinoda, composed by Rama in the late sixteenth
century, and the numerous versions of Grahalaghava-sarans based on the 1520 Grahalaghava of Ga-

nesa [Pingree 1981, 37-43].
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Folio Contents

No.

1r-2v The longitude of the moon and its anomaly (argument 0-360°)

2v-3r Mean motion of the moon per ghatika (argument 1-60 ghatikas; no
title)

3r-6r Lunar manda-equation, differences, and gatiphala (argument 0°0°—
11529°)

6r-6v Instructional verses 1-10

Table 1: MS S29, Poleman 4952 (Smith Indic 29)

Folio Contents

No.

Ir Solar declination and lunar latitude (argument 1-90°)

1r-1v Correction for Mars’ apogee (argument 1-45°)

1v-2r Solar manda-equation, differences, and gatiphala (argument 1-90°)

2r- 2v Lunar manda-equation, differences, and gatiphala (argument 1-90°)

2v-3r Mars manda-equation, differences, and gatiphala (argument 1-90°)

3r-3v Mercury manda-equation, differences, and gatiphala (argument 1-90°)

4r-4v Jupiter manda-equation, differences, and gatiphala (argument 1-90°)

4v-br Venus manda-equation, differences, and gatiphala (argument 1-90°)

5r-5v Saturn manda-equation, differences, and gatiphala (argument 1-90°)

6r-7v Mars Sighra-equation, differences, and hypotenuse (argument 1-180°)

8r- 9r Mercury Sighra-equation, differences, and hypotenuse (argument 1—
180°)

9v-10v | Jupiter S$ighra-equation, differences, and hypotenuse (argument 1—
180°)

11r-12r | Venus $ighra-equation, differences, and hypotenuse (argument 1-180°)

12v-13v | Saturn Sighra-equation, differences, and hypotenuse (argument 1-180°)

Table 2: MS S43, Poleman 4876 (Smith Indic 43)

some manuscript details relating to annual mean longitude corrections (abdabija
and ramabija; see the technical analysis for verse 3) suggest that their tables were
designed for users several centuries after 1183. In the first place, the oldest known
allusion to ramabija corrections occurs no earlier than 1519 [Pingree 1996, 169].
Furthermore, some abdabija values for Venus recorded in a table header in MS S45
f. 5v are assigned to increments of 432, 441, and 450 years. Assuming these refer to
years elapsed since the 1183 epoch, we should infer a compilation date in the range
1615-1633.

In addition, MS S45’s version of the 20-year mean motion tables applies an initial-
position adjustment corresponding to a date as much as 600 years after 1183 (see
the technical analysis for verse 2). These variations from one manuscript to another
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Folio Contents

No.

1r Mean motions of the sun in days, months, years, and 20YP

1v Mean motions of the moon in days, months, years, and 20YP

2r Mean motions of the lunar apogee in days, months, years, and 20YP

2v Mean motions of the node in days, months, years, and 20YP

3r Mean motions of Mars in days, months, years, and 20YP

3v Mean motions of Mercury’s $ighra-apogee in days, months, years, and
20YP

4r Mean motions of Jupiter in days, months, years, and 20YP

4v Mean motions of Venus’ $ighra-apogee in days, months, years, and
20YP

o1 Mean motions of Saturn in days, months, years, and 20YP

5V Solar declination

5v Lunar latitude

Table 3: MS SMB, Poleman 4946 (Smith Indic MB LVIII)

suggest that at least some of their author-scribes saw fit to adjust crucial data for
their particular circumstances, although the basic structure and use of the tables
remained unchanged.

Two of the manuscripts mention their date of copying in colophons, although
neither is much help in pinpointing the work’s composition date. In MS S45 (f. 17v
margin):

samuat 1855 varse $ake 1720 pravarttamani karttikavid 11 some

Saka 1720, or Samvat 1855, Karttika Suklapaksa 11 corresponds to the date 19
November 1798, which was indeed a Monday or somavara, as the scribe asserts.
MS B has (f. 28v):

samuat 1784 || varse kati sudi 2 budhavare pothilasitam carambagasu ||

Samvat 1734 Karttika Suklapaksa 2 corresponds to 28 October 1677 CE which was
in fact a Thursday and not, pace the scribe, a budhavara or Wednesday. The closing
phrase may indicate that the manuscript (pothi in various northern Indian vernacu-
lars) was copied in a location called something like “Rambag” (possibly Ram Bagh
near Agra?), but the interpretation is very tentative.
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Folio Contents

No.

2r Mean motions of the sun in days, months, years, and 20YP

2v Mean motions of the moon in days, months, years, and 20YP

3r Mean motions of the lunar apogee in days, months, years, and 20YP

3v Mean motions of the node in days, months, years, and 20YP

4r Mean motions of Mars in days, months, years, and 20YP

4v Mean motions of Mercury’s $ighra-apogee in days, months, years, and
20YP

or Mean motions of Jupiter in days, months, years, and 20YP

5v Mean motions of Venus’ $ighra-apogee in days, months, years, and
20YP

61 Mean motions of Saturn in days, months, years, and 20YP

6v Solar manda-equation, differences, and gatiphala (argument 1-90°)

r Lunar manda-equation, differences, and gatiphala (argument 1-90°)

v Solar declination and lunar latitude (argument 2-90°, every second
degree)

v Correction for Mars’ apogee (argument 1-45°)

8r Mars manda-equation, differences, and gatiphala (argument 1-90°)

8v-9v Mars Sighra-equation, differences, and hypotenuse (argument 1-180°)

10r Mercury manda-equation, differences, and gatiphala (argument 1-90°)

10v-11v | Mercury $ighra-equation, differences, and hypotenuse (argument 1-
180°)

12r Jupiter manda-equation, differences, and gatiphala (argument 1-90°)

12v-13v | Jupiter Sighra-equation, differences, and hypotenuse (argument 1—
180°)

14r Venus manda-equation, differences, and gatiphala (argument 1-90°)

14v-15v | Venus Sighra-equation, differences, and hypotenuse (argument 1-180°)

16r Saturn manda-equation, differences, and gatiphala (argument 1-90°)

16v-17v | Saturn Sighra-equation, differences, and hypotenuse (argument 1-180°)

Table 4: MS S45, Poleman 4735 (Smith Indic 45)

I.3 Typographic Conventions

In the edite
employ the

d text as well as in the transliteration, translation and commentary we
following editorial conventions (see also Montelle and Plofker [2013]):

e Square brackets | | indicate an editorial addition or proposed reconstruction of

missing text.

e Scribal variants of nagari orthography which are emended silently and not

noted in the critical apparatus (except where the meaning of the original read-
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Folio No. | Contents

2r-2v Mean motions of the sun in days, months, years, and 20YP

2v-3v Mean motions of the moon in days, months, years, and 20YP

3v-4dv Mean motions of the lunar apogee in days, months, years, and 20YP

4v-5v Mean motions of the node in days, months, years, and 20YP

5v-6v Mean motions of Mars in days, months, years, and 20YP

6v-8v Mean motions of Mercury’s sighra-apogee in days, months, years, and
20YP

8v-9r Mean motions of Jupiter in days, months, years, and 20YP

9r-10r Mean motions of Venus’ sighra-apogee in days, months, years, and
20YP

10r-11r Mean motions of Saturn in days, months, years, and 20YP

11r-12r Solar manda-equation and gatiphala (argument 1-90°)

12r-13r Lunar manda-equation and gatiphala (argument 1-90°)

13r Correction for Mars’ apogee (argument 1-45°)

13v -14v | Mars manda-equation and gatiphala (argument 1-90°)

14v-16v | Mars Sighra-equation and hypotenuse (argument 1-180°)

16v -17v | Mercury manda-equation and gatiphala (argument 1-90°)

17v-19v Mercury $ighra-equation and hypotenuse (argument 1-180°)

19v-20v Jupiter manda-equation and gatiphala (argument 1-90°)

20v-22v | Jupiter Sighra-equation and hypotenuse (argument 1-180°)

22v-23v Venus manda-equation and gatiphala (argument 1-90°)

23v-25v Venus $ighra-equation and hypotenuse (argument 1-180°)

261-26v Saturn manda-equation and gatiphala (argument 1-90°)

27r-28v Saturn sighra-equation and hypotenuse (argument 1-180°)

Table 5: MS B, BORI 501,/1895-1902

ing may be ambiguous) include the following: anusvara used for a nasal con-
sonant or an incorrect nasal substituted, omitted wvisarga, virama or avagraha,
misplaced dandas, reversed conjunct consonants (e.g., adba for abda), conjunct
consonants that we cannot reproduce in our nagart typesetting, doubled con-
sonants after r or across a pada break, and routinely confused consonant pairs
(e.g., ba for va, sa for kha).

Fragments of Sanskrit words or compounds in nagar? are indicated with a small
circle o at the breakpoint.

Folio breaks are indicated by a single vertical stroke ‘

In the critical apparatus, text followed by a single square close-bracket ] indi-
cates the edited version of the manuscript reading that follows it.

The symbol x within nagar? text indicates an aksara (syllable) that is too
illegible or indefinite in the manuscript to reconstruct confidently; in square
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brackets, it signifies a missing aksara (in a metrically deficient verse).

e Numerals in sexagesimal or base-60 notation are shown with a semicolon sepa-
rating their integer and fractional parts, and commas separating their succes-
sive sexagesimal digits. The superscripts * and ° and ' indicate zodiacal signs
(i.e., 30-degree arcs of longitude), degrees and minutes of arc, respectively.

IT Text and Translation

om || $riganesaya namah ||
OM. Homage to Lord Ganesa.

Verse One: Invocation

natva vallabhanandanam tadanugopalamhripadmadvayam

jhatva sriguruvakyato hy aharnisam [drstva] dyum evadhuna ||
siddhantesu yathoktakhecaravidhi[bhya]h spastakostam muhur
madhyaspastavibhagato grahaganat kurve dinaughad aham || 1 ||

Saluting Vallabhanandana and after him the two lotus feet of Gopala, having learned
from the word of the revered teacher and having observed the heavens themselves by day
and night, now | shall compute an accurate set of tables from the rules of the planets
as spoken in the Siddhantas, separately for mean and true [quantities], for the various
planets, from the accumulated days.

Verse Analysis

Meter: Sardulavikridita.

Gopala is a well-known epithet for Krsna, but we cannot identify more precisely
the deity referred to as Vallabhanandana. The word drstva “having seen” or “having
observed” is speculatively suggested for the defective second pada (quarter-verse) to
preserve the meter and the sense.

Verse Two: Computing the Mean Longitudes for a Given Date

krtvadau karanoktavasaraganam Sistaih suhrstatmabhir

bhajyam khagni 30 mitair avaptakam idam stryair 12 vibhajyam punah ||
labdham vimsati 20 bhir bhajed atha catuhsesankasamjina dhruvam
ankas te militah svakostakagata lankanagaryam khagah || 2 ||

Firstly, computing the number of accumulated days as stated in the handbook, the
learned who are cheerful in nature are to divide [it] by the amount 30; again this quotient
should be divided by 12; one should divide the result by 20. Now, precisely these
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numbers called the four remainder-numbers, [entered into] their respective tables [with
the corresponding entries| combined, are the [mean longitudes of the] planets at the city
of Lanka [i.e., for zero degrees of terrestrial longitude].

Verse Analysis
Meter: Sardulavikridita.
Technical Analysis

This verse explains how to manipulate the entries in a set of four mean motion tables
provided by the Brahmatulyasarani for each of the specified celestial bodies to reckon
up the body’s mean longitude at a desired time. (MS SMB'’s version of these four
tables for the sun is shown in Figure 1 to illustrate the arrangement.) First, the
user must know the ahargana or number of civil days elapsed since the tables’ epoch
date. Dividing this ahargana by 30 produces an integer number of completed (ideal)
“months” of 30 days each and a remainder D in days. That number of “months”
divided by 12 in turn yields an integer number of ideal “years” of 360 days each
and a remainder M in “months.” The number of “years” divided by 20 gives the
number 1" of elapsed 20-“year” periods and a remainder Y in “years.”

The first of the four mean motion tables contains successive multiples from 1
through 30 of the body’s mean daily motion, i.e., the amount of change in its mean
longitude over the corresponding number of days. The next three tabulate similar
longitude increments for 1 through 12 ideal 30-day “months,” 1 through 20 ideal
360-day “years,” and 1 through 30 successive 20-“year” periods. The values in this
last table include an epoch correction computed for 20 (ideal) “years” after the epoch
date of the Karanakutuhala: i.e., the body’s epoch longitude as given in Karana-
kutuhala 1.4-6 and 13, plus an amount equal to its mean daily motion multiplied
by 360 x 20 [Mishra 1991, 5, 11; Rao and Uma 2008, S4, S12]. Thus, after entering
into each of the appropriate mean motion tables with D, M, Y and T, the user
simply adds up the four corresponding table entries (modulo 360°) to get the mean
longitude for the body in question since epoch.

In one manuscript (MS S45) the argument values in each planet’s 20-“year”-
periods table are numbered 31-59 rather than 1-30, and its entries incorporate an
epoch correction equal to the Karanakutuhala epoch longitude plus the mean daily
motion multiplied by 360 x 20 x 30. The apparent implication is that the tables
were expected (at least by the scribe of MS S45) to be used beginning at some time
nearly 600 years after the Karanakutuhala epoch date.

It is rather striking that the Brahmatulyasarani procedure demands an ahargana
already converted from a date in actual Indian calendar units, such as synodic
months, thirtieths of a synodic month (tithis), and luni-solar years, to total civil
days. Evidently the conversion procedure “stated in the handbook” (presumably
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Figure 1: Tables of increments to the mean position
of the sun for a given number of days,
“months,” “years,” and 20-“year” periods (en-
titled raviksepakah “Additive (positions) of the
sun”) elapsed since the Karanakutahala’s epoch
(MS SMB f. 1r).

Karanakutuhala 1.2-3 [Mishra 1991, 2; Rao and Uma 2008, S1]) can simply be
prescribed rather than explained. The resulting total must then be apportioned
into the appropriate multiples of 7200, 360, 30 and single civil days for convenience
in computing the corresponding mean motion increments. These mean motion tables
with their idealized “months” and “years” in round numbers of civil days are in fact
more reminiscent of some Islamic z7j calendar conversion tables than of the standard
ahargana algorithms in Sanskrit texts.?

Verse Three: Mean Planetary Positions and their Corrections

madhyah svadediyakhaga bhaveyur
desantarenabda x [x] x rama- ||

bijena yukta ganakais tatas ca

spastah kriyante phalayugmakena || 3 ||

2 The Brahmatulyasarani’s allotment of the standard integer numbers of civil days in the “month”
and the “year” resembles in particular the tradition of z7jes using Persian and/or Ptolemaic years in
blocks of 20, such as those of al-Manstur and al-Battani. Other zijes including those of al-Hasib and
al-Khazint commonly use hijra calendar months and blocks of 30 (hijra) years; see, e.g., [Kennedy

1956, 145-167].
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The mean [longitudes] should become [longitudes of] the planets for one's own locality
[when] adjusted by the longitude-correction [and] by the ramabija [correction] with the
annual [correction?]. And from [those], the true [longitudes| are made by the calculators
by means of the two equations [i.e., manda and sighra equations].

Verse Analysis

Meter: upajati.

The manuscript appears to have for the second pada of the verse the metrically
and logically deficient desantarenaprabhatharama (see Figure 2), which we hypoth-
esize originally enumerated the desantara, abdabija and ramabija corrections. But
we cannot fully reconstruct the allusion to the abdabija (one possibility would be

desantarenabdaviliptarama).

IR

Figure 2: Manuscript rendering of verse 3, pada 2 (MS S29 f. 6r).

Technical Analysis

This verse describes various modifications to the computed mean positions. The first
adjusts them from the default locality at the notional Indian zero-point of latitude
and longitude, i.e., the ideal position of Lanka at the intersection of the equator
and the prime meridian, to the terrestrial longitude of one’s own locality by means
of the so-called desantara or longitudinal difference correction. In Karanakutuhala
1.14-15, Bhaskara declares the desantara to be this longitudinal difference measured
in yojanas, multiplied by the daily motion of the planet in question in arcminutes
(kalas) per day and divided by 80 [Mishra 1991, 12; Rao and Uma 2008, S13]. (The
factor of 80 can be explained as follows: The circumference of the earth is taken to be
4800 yojanas, which are passed over in each revolution of the celestial equator during

one day or 60 ghatikas [Plofker forthcoming, ch. 1|. Therefore, the revolution takes
60

1800 — %0 ghatikas per yojana of terrestrial longitude at the equator.) The result
is measured in wvikalas or arcseconds and is to be applied positively or negatively at
longitudes west or east of the prime meridian, respectively.

As we reconstruct it, the Brahmatulyasarani here mentions a second correction
also discussed by Bhaskara (Karanakutuhala 1.16 [Mishra 1991, 13; Rao and Uma
2008, S13]), the abdabija (literally “yearly correction”). This serves merely to correct
computational inaccuracies in the standard mean motion values based on the more
precise long-period parameters of Brahmapaksa astronomy [Plofker forthcoming,
ch. 1].

No abdabija is applied to the mean sun, Jupiter or Saturn. For each of the
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other bodies, the number of years elapsed since the epoch (gatabda) is divided by
an appropriate integer to produce a correction in seconds of arc.

The derivation and purpose of ramabija corrections to the epoch mean longi-
tudes are still not fully explicated. They appear to be a post-Bhaskara innovation
attributed to one Rama, and are attested in slightly different form in another au-
thority named Ramacandra [Pingree 1996, 168-171].

Verse Four: Interpolation Procedure

kendrasya doramsamiti$ ca koste
bhuktam tadagram parabhogyakam ca ||
kaladikam tadvivarahatam tu
sastyuddhrtam bhuktakamanakena || 4 ||

The amount in degrees of the arc of the [desired] anomaly (kendra) is [entered] in the
table. [The table entry for the degree] before that is the “elapsed” (bhukta) and [then]
the following “future” (bhogya). The minutes etc. [of the argument] are multiplied by
the difference of those [i.e., the two table entries| and divided by sixty, [and the result
increased] by the amount of the “elapsed.”

Verse Analysis
Meter: upajati.
Technical Analysis

This verse appears to be nothing more than an explanation of linear interpolation
between two values of a function tabulated for each successive integer degree of
its argument. The argument in the remaining tables of the Brahmatulyasarant is
typically the planet’s orbital displacement or “anomaly” (kendra; see the technical
analysis for the following verse).

Two standard technical terms relating to interpolation are introduced: the bhukta
or “past” value refers to the table entry for the integer degree immediately preceding
the desired argument, and the bhogya or “future” value to the entry for the degree
immediately after it.> The concise instructions prescribe scaling the fractional dif-
ference between the desired argument value and the next lower integer degree by the
difference between the two neighbouring table entries to give the required increment

3 A similar verse using the same two terms for the differences between a given argument value and
the two table entries surrounding it is used to explain linear interpolation within a crude sine table

in Karanakutiahala 2.6 [Mishra 1991, 21; Rao and Uma 2008, S17-S18].
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for the interpolated function value:

bhogya — bhukta

desired value = bhukta + &0

- (fractional part of desired argument)

Verse Five: Application of the manda-Correction

yuktam bhaven mandaphalam grahanam
svarnam kraman mesatuladikendre ||
grahasya bhuktir vivarahatam ca
sastyuddhrtam kendravasad dhanarnam || 5 ||

The manda-equation (mandaphala) of the planets should be applied positively or neg-
atively [to the mean longitude of the planet] when the anomaly (kendra) is in [the
semicircle] beginning with Aries or Libra respectively [i.e., when the anomaly is between
0 and 180 or between 180 and 360 degrees]. The velocity of a planet [is modified by
the manda-correction as follows: the fractional part of the desired value of anomaly],
multiplied by the difference [between successive entries in the table of velocity-correction
(gatiphala)] and divided by sixty, [is the increment to the appropriate tabulated gati-
phala entry. The resulting gatiphala is applied to the mean daily velocity] positively or
negatively according to [whether| the anomaly [is in quadrants Il and Il or quadrants
IV and | respectively].

Verse Analysis
Meter: upajati.
Technical Analysis

In order to determine the true longitudes of the planets, their mean longitudes need
to be adjusted for the inequalities of their orbits. The manda “slow” and Sighra
“fast” equations mentioned in verse 3 are used to correct the mean position of a
planet to its true one based on its anomaly or angular displacement in longitude
from the direction of the corresponding apogee. The sun and moon have only one
anomaly each and thus are not $ighra-corrected.

The present verse describes corrections due to the manda-anomaly, i.e., the dif-
ference between the mean position of the planet A and that of its manda-apogee
Aa,,- This corresponds to the assumption, in an eccentric geocentric orbital model
such as the one illustrated in Figure 3, that the orbiting body is moving with uni-
form velocity upon a circle whose center is displaced from the earth by an amount
of eccentricity rj;. This displacement produces changes in speed and position over
the course of the body’s revolution that are qualitatively similar to the effect of an
elliptical orbit with the earth at one focus. The manda-equation p (mandaphala)
is the displacement in ecliptic longitude from the planet’s mean position resulting
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from the manda-anomaly Ky = Aa,, — A.

As shown by the diagram on the left in Figure 3, the correction p (represented
by the angle /POP between the mean position P and the corrected position P as
viewed from the earth) is zero when the planet is on the apsidal line defined by its
apogee-point and the earth: that is, when its anomaly is 0 or 180 degrees. The
mandaphala values are symmetric about the absolute maximum that occurs when
the anomaly is either 90 or 270 degrees; they are positive (meaning that the planet’s
corrected longitude will be larger than its mean longitude) when the anomaly falls
in the first two quadrants, and negative thereafter.

Awm
P3 -~ "~ eccentric circle
increasing s
longitude .’

Figure 3: The manda correction interpreted geometrically
via an eccentric orbit. Left: The point O is the
observer’s position at the center of the concen-
tric circle on which the mean planet P moves, C
the center of the eccentric representing the actual
path of the planet P, the distance OC the amount
of eccentricity ras, and Ay the position of the
manda-apogee from which the anomaly ZAx OP
or ky is computed. Right: The manda-equation
u is computed trigonometrically from the right
triangle with manda-hypotenuse Hyr = OP.

The diagram on the right in Figure 3 shows the trigonometric definition of the
mandaphala 1 based on the right triangle containing acute angle p, its opposite side
Sinkys - ry /R, and its adjacent side R &+ Coskys - vy /R (where R is the radius
of the Sine-table and the capitalized Sine function is just R times the modern sine
function with unit radius). The ratio of the opposite side to the hypotenuse then
gives (bearing in mind that the modern cosine function can be either positive or
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Figure 4: First half of the table in MS S45 f. 6v for deter-
mining the sun’s manda-equation.
negative, so the + symbol becomes unnecessary):
. M
Sin ks - =
sin = - -
. M M
(Slan . —) + <Ri Cos kg - —)
R R
M oSin K
= - (1)

\/(TM sin /<;M)2 + (R + rpz cos KZM)Q

Figure 4 shows the sun’s manda-equation table from MS S45, with the following

header text:

mandaphalam adho ’ntaram tadadho gatiphalam || ravimandaphalani || adho gati-
phalam || ravimandoccam 2| 18 | 0| 0 kendravasad dhanarnam ||

The manda-equation; below, the difference; below that, the gatiphala. The manda-
equations of the sun. Below, the gatiphala. The manda-apogee of the sun (is) 2 (zodiacal
signs) 18 (degrees) 0 (minutes) 0 (seconds); (the manda-equation is) positive or negative

according to (the amount of) the anomaly.

The longitude A 4,, of the sun’s manda-apogee, 2°18° or 78° total, is the value stated
in Karanakutuhala 2.1 [Mishra 1991, 18; Rao and Uma 2008, S15]. (Because most
of the planets’ manda-apogees move so slowly, their change of position v4,, over a
few hundred years or so may be neglected.) The first row in each horizontal segment
of the table contains the degree of manda-anomaly as the table argument, running
from 0 to 90. The second row is the manda-equation, whose maximum value at 90°

of anomaly is 2° 10’ 54”.
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Figure 5: The sun’s manda-equation in degrees versus
degrees of manda-anomaly, as computed via
Karanakutihala 2.9-10 (blue line), and its tab-
ulated values in Brahmatulyasarans MS S45 f. 6v
(red dots).

The graph in Figure 5 indicates that its tabulated values, between which the
user is instructed to interpolate linearly, correspond very closely to the algorithm
prescribed in Karanakutuhala 2.9-10 [Mishra 1991, 23; Rao and Uma 2008, S19]. It
approximates the manda-equation by the Sine of the manda-anomaly scaled to the
maximum value of u [Plofker forthcoming, ch. 2]. Since the Karanakutuahala gives
Sine values only for integer multiples of 10° and interpolates linearly between them,
the resulting function comes out piecewise-linear over 10° intervals. Hence the third
row of the table shows the differences between successive entries in the second row
changing only at every tenth entry.

The table’s fourth row is the so-called gatiphala or velocity-correction of the sun,
beginning with the maximum value of 2,20 arcminutes and ending at the minimum of
0,13. The algorithm by which these gatiphala values were apparently determined ap-
proximates a more accurate function described in Siddhantasiromani 2.36-38 [Séstﬁ
1866, 52-53|, which uses the Cosine of a planet’s manda-anomaly kj; to produce
the sinusoidal variation of the velocity-correction:

_, (v—wa,,) -Coskp - (ry/R)

vy =v % R . (2)

The planet’s manda-corrected angular velocity vys will increase from its minimum
value when the planet is most distant, at the apogee, to equal its mean velocity v
when the anomaly is 90°. It reaches its maximum at closest distance or perigee when
the anomaly equals 180°, subsequently slowing down to its minimum again when
it returns to the apogee—hence the decrease of the tabulated gatiphala (absolute)
values to nearly zero at the end of the first (or third) quadrant of anomaly, and the
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Figure 6: The sun’s manda-derived velocity correction in
arcminutes versus degrees of manda-anomaly, as
computed via Karanakutahala 2.11-12 (blue line),
and a sample of its tabulated values in Brahma-
tulyasarant MS S45 f. 6v (red dots). The more ac-
curate smooth version of the correction-term func-
tion from Siddhantasiromani 2.36-38 (green line,
Equation 2) is shown for comparison.

requirement that they be applied positively to accelerate the mean velocity in the
perigee-half of the anomalistic circle but negatively to decelerate it in the apogee-
half.

The approximate formula stated in Karanakutuhala 2.11-12 replaces the above
velocity-correction term with a scale factor multiplied by the difference between the
tabulated Sine values of the 10° interval in which the anomaly s falls (this Sine-
difference very roughly approximates the Cosine in the exact formula) [Mishra 1991,
24; Rao and Uma 2008, S23-S24|. Since the rule does not call for interpolating
within that 10° interval, it amounts to a step function rather than a continuous one,
as illustrated in Figure 6.

Verses Six and Seven: Computing the sSighra-Correction; Iterated
Corrections

grahonam uccam ca phalam rasadhikam
cet siiryatah Sodhya lavadikam krtam ||
bhagankasamkhyagatakostakam tayoh

kaladikam $esam vivarahatam tat || 6 ||

sastya vibhaktam svam rnam ca bhogyat
karyam vihinadhi[ka]tatkramena ||
adau hi mandardha [x] kena tasmat
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samagram [x x x| punah punas ca || 7 ||

[The longitude of] the apogee is diminished by [the longitude of] the planet. Having
subtracted the result from 12 [signs] if it is greater than 6, it is made into degrees etc.
[Subtract from this reduced sighra-anomaly| the previous table entry for the number
[equal to its] number of degrees; the remainder [from the subtraction] of those two is
in arcminutes and so on. That is multiplied by the difference [between the previous
and the next table entries, and] divided by sixty. [The result is] applied [to the previous
entry| positively or negatively, according as that is respectively less or greater than the
next entry. At first, [the mean longitude is corrected] with half the manda-equation and
afterwards with the whole, repeatedly.

Verse Analysis

The meter is vamsamala in verse 6. The scansion of the final pada of verse 6 is
wrong: where the pattern of ganas should be either ta-ta-ja-ra or ja-ta-ja-ra, it is
ja-ma-sa-ya.

The intended meter of verse 7 is apparently upajati, but the text is evidently
corrupt. The second pada requires an interpolated syllable that is quite plausibly
restored as ka to reach the required total of eleven, but there is no equally obvious
way to emend the last two deficient padas of ten and eight syllables respectively.

Technical Analysis

The second planetary longitude correction is the Sighra-equation o, roughly corre-
sponding to the correction for synodic anomaly in western geocentric astronomy. It
accounts for the phenomena of planetary stations and retrogradation, heliocentri-
cally explained by the fact that the other planets as well as the earth are revolving
about the sun. Thus a planet seen from the earth as they pass in their orbits can
appear to pause and go backwards temporarily. Since the sun and moon do not ret-
rograde and thus do not have a sighra-anomaly, as noted previously, this correction
applies only to the five star-planets.

The concept used in Indian astronomy to model this effect is a second anomaly
or sighra-kendra kg measured from a notional point called the Sighra-apogee. Its
position coincides with that of the mean sun in the case of superior planets, and with
the planet itself in the case of inferior planets (for which the sun’s mean position
does duty as their mean longitude for the purpose of computing the anomaly).

The $ighra-anomaly kg is determined by subtracting the longitude of the planet
corrected by the manda-equation, or \y7, from that of its szghra-apogee, Aag. Since
the $ighra-apogee revolves about the earth faster than the mean planet does, the
planet periodically appears to go backwards while it is close to its opposition (or in
the case of an inferior planet, its inferior conjunction) with respect to the sun. Fig-
ure 7 qualitatively illustrates the sighra for a superior planet, neglecting the effect of
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the manda: as the Sighra-anomaly angle goes from 0° to 180°, the planet’s apparent
motion follows the dotted path, whose loops represent the apparent retrogradations.

Figure 7: The Sighra-correction for a superior planet. Left:
The sighra-anomaly ks and the corresponding
correction are zero when the planet is in conjunc-
tion with the sun. Center: The direction of the
planet stays parallel to that of the sun, which is re-
volving faster than the mean planet on its orbit, so
the planet appears to slow down in its forward mo-
tion. Right: The continued motion of the mean
sun appears to drag the planet backwards, so that
it reaches the center of its retrograde motion in
opposition to the sun, with anomaly 180°.

This cyclic “looping” means that the sighra-equation values are symmetric about
the end of the second quadrant of anomaly. More precisely, they are given by the
formula stated in Karanpakutuhala 2.13 [Mishra 1991, 25; Rao and Uma 2008, 26],
which is analogous to that for the manda-correction defined in Equation 1 and
equivalent to the following expression:

) R - rgsinkg R - rgsinkg
Sino = = .
\/(rs sin kg)? + (R + 75 cos kg)? Hs

(3)

Here, rg is the radius of the planet’s sighra-epicycle while the so-called Sighra-
hypotenuse

Hg = \/(7"3 sin kg)? 4+ (R + rg cos kg )

extends from the planet’s true position to the earth. Since the Cosine of the Sighra-
equation is similarly given by
Coso — R - (R+ rgcoskg) _R- (R—{}{?“Scosms)7 (4)
\/(7“5 sinkg)? + (R + rg cos kg)? S
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we can write

. rgsinkg
sing =

\/(rg sin kg)? 4 (R + rg cos kg )

rgsSinkg

Vrg2sin? kg + R2 4+ 2Rrg cos kg + 152 cos? kg
rgsinkg
\/rs? + 2Rrg cos kg + R?
rgsinkg
Hg

and likewise

R+ rgcoskg R+ rgcoskg
coso = = .

\/r52 + 2Rrg cos kg + R2 Hg

19

(5)

(6)

It is clear, as the tables of the planets’ $ighra-equations illustrate, that o is zero
when the anomaly is zero (at conjunction or superior conjunction for a superior or
inferior planet respectively) or 180° (opposition/inferior conjunction). To find where
the maximum o-values occur, we set the derivative of o = arcsin(sin o) to zero and

solve for xkg:

d Lo d . rgsinKg
(arcsin(sino)) = —— | arcsin
d ks drs \/75% 4+ 2Rrg cos ks + R2
d . [rssinkg
= — [arcsin [ =——=
dkg Hg
. 9 Rresi
B 1 (rgcoskg)(Hg) — LA fis(zHST’s Sin is)
= . :
1 re?sin® kg Hs
Hg?
_ 1
1 re?sin kg
_ T

)

rssinkg(—2Rrgsinkg)

(rscos kg)\/T52 + 2Rrg cos kg + R2 —

2\/r52 + 2Rrg cos kg + R2

Hg?
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B 1 rscos kg(Hg?) + Rrg®sin? kg
= . 5
Hg? —rg?sin? kg (Hs”)Hs
Hg?

_ Hs
V/rs?cos? kg + 2rg cos kg + R2

<T53 cos kg + 2Rrs? cos® kg + R%*rg cos kg + Rrg? sin® m5>
(Hs*)Hs

rg3 cos kg + Rrg? cos? kg + R%rg cos kg + Rrg?
V(rscosks + R)? - (Hs?)

(rgcos kg + R)(rs? + Rrg cos kg)
V/(rscosks + R)2 - (rs? 4+ 2Rrg cos ks + R2)

B rs® 4+ Rrg cos kg
rg2 +2Rrgcoskg + R?

When o is at its maximum, this reduces to

rs? + Rrgcos kg

0=
rg? 4+ 2Rrgcos kg + R?
= rg? + Rrg cos kg
=rg+ Rcoskg
rs
COSKkg = —— .
R

Since the ratio of the two radii is between about 0.1 and 0.7, depending on the
planet, this tells us that the maximum S$ighra-equation occurs when the anomaly
attains a certain value in the second quadrant (and again when the anomaly is zero
minus that value, in the third quadrant). Thus the linear interpolation procedure
for the $ighra-tables must specify whether the interpolated increment of equation is
to be added to or subtracted from the previous tabulated value, according as the
equation is increasing or decreasing respectively.

Figure 8 shows a selection of the Brahmatulyasarani’s tabulated $ighra-function
values for Jupiter, and Figure 9 compares them to the results of the Karanakutu-
hala’s formulas. It is not quite clear why the compiler of the tables bothered to
tabulate the values of the Sighra-hypotenuse Hg, as none of the rules specified in
the Brahmatulyasarani requires the user to employ it; however, the values shown
confirm that the Brahmatulyasarant follows the Karanakutuhala in using R = 120
for the trigonometric radius.
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Figure 8: Part of the sighra-equation table for Jupiter in
MS S45 f. 13r, showing the maximum value of
the equation o(® at 100° of anomaly, outlined in
red. The second row of the table contains the
differences Ac() between the successive entries,
and the third row the corresponding values of the
hypotenuse Hg.

The procedure in Karanakutuhala 2.14 specifies that the initial equations for both
manda- and $ighra-corrections should be halved before applying them to the planet’s
longitude—but only in the case of Mars [Mishra 1991, 26; Rao and Uma 2008, S28].
This Brahmatulyasarani algorithm, on the other hand, seems to generalize the initial
halving of the manda-equation to all the planets. It may be that some of the missing
syllables that make the verse metrically deficient originally specified Mars, but we

have not taken it upon ourselves to restore them.

Verses Eight and Nine: Application of the sSighra-Velocity Correc-
tion; Retrograde Motion and Combination of Corrections

drakkendrabhuktir vivarena nighna
sastyuddhrtam svam ca phalasya vrddhau ||
hrasa rnam mandagater grahanam

krtam iti syat sphutakhetabhuktih || 8 ||

yada na $uddha tu vilomasodhya
Sesesu vakra bhavatiha bhuktih ||
bhaumadikah karmacatustayena
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Figure 9: Functions for 0-180° of §ighra-anomaly for
Jupiter, as represented by the Karanakutahala’s
algorithms (blue line) and sample values tabu-
lated in Brahmatulyasarant MS S45 ff. 12v-13r
(red dots; see Figure 8). Left: The sighra-
equation ¢ in degrees. Right: The Sighra-
hypotenuse Hg in radial units (R = 120).

kujas tu yavat sthiratam upeti || 9 ||

The velocity of the sighra-anomaly is multiplied by the difference [between successive
sighra-equation values corresponding to that sighra-anomaly] and the quotient with sixty
[is applied] positively with respect to the mandal-corrected] velocity of the computed
planets when there is increase of the equation [in successive tabulated values|, negatively
when there is decrease. Thus the velocity of the true planet should be [computed].

When [the modified sighra-anomaly velocity] is not [capable of being] subtracted [from
the manda-corrected mean velocity, it] is to be reverse-subtracted. The velocity here
becomes retrograde in [the amount of] the remainders. The [star-planets] beginning
with Mars [are corrected] by four procedures, but Mars [itself] until [it] attains fixedness.

Verse Analysis

Meter: upajati.

The text of the third pada of verse 8 is very unclear and we have taken
several liberties with its interpretation. @ The manuscript reads hraso rnam
mamdardhagatagrahanam, which is both hypermetric and ungrammatical, as well
as difficult to make sense of. We speculate that hraso resulted from a faulty sandhi
correction of hrasa for locative absolute hrase before rnam, and that the scribe may
have written mamdardha in unconscious imitation of the phrase mamdardhakena
from verse 7 that appears just above it in the preceding line.
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Technical Analysis

The algorithm in verse 8, unlike those in the previous verses, diverges markedly
from its counterpart in the Karanakutihala (2.14-2.16ab).* The Brahmatulyasarani
determines and applies the velocity correction due to the Sighra-anomaly to produce
the planet’s true velocity v by a linear interpolation, as follows:

)
v:T)M—I-vHS-%. (8)

Here, v)s is the planet’s mean velocity v corrected by the manda-gatiphala from
Equation 2 in the discussion of verse 5; v, is the so-called velocity of the Sighra-
anomaly, i.e., the difference between two successive values of the S$ighra-anomaly
KS = Aag — Air; and Ao is the difference between two successive tabulated values of
the sighra-equation 0. We take Ao to be positive when ¢ is increasing and negative
when o is decreasing, so we write “+” instead of “+” in the velocity formula.

The “anomaly velocity” v, can be shown to be equivalent to (va, — Uas), the
difference between the velocity va of the Sighra-apogee (which, unlike that of the
much slower manda-apogee, cannot be assumed to be zero) and that of the manda-
corrected planet. To wit: Understanding each of these velocities as simply a change

4The Karanakutihala’s procedure is stated in the following verses which are differently arranged

and numbered in different editions [Mishra 1991, 26-27; Rao and Uma 2008, S197]:

tadutthamandena calena madhyas

cet samskrtah spastataras tada syat ||
dalikrtabhyam prathamam phalabhyam
tato ’khilabhyam tu punah kujas tu ||
gateh phalenaiva tu samskrta ya
madhya gatir mandagatir bhavet sa ||
grahasya mandasphutabhuktivarjita

svasdighrakendrasya gatir bhavet sa ||

drakkendrabhuktir gunitasucapa-
bhogyajyaya khabdhiguna ca bhakta ||
saptaghnakarnena caloccabhukteh
Sodhyavisistam sphutakhetabhuktih ||
yada na $uddha viparitasodhya

Sesam bhaved vakragatis tadanim ||
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between two successive positions in longitude with superscripts ¢ and i, we write

(Mas™ = Aaf") = (as" = M) = (g™ = Aag) = (" = Awf)

Moreover, since the true planetary longitude A is given by
A=A Mt o,

and we can regard velocity as just the derivative of longitude with respect to time,
the true velocity v can be defined thus:

v = %(A) = %(S\M +o0)= %(S\M) + %(0’)

d < d . [rssinkg
= $(AM) + o (arcsm <HS>)

_d < d . [rgsinkg d
= dt()\M) + drs <arcsm< s >> dt(mg)

:/UM—F%(O—)"UHS?

(9)

where Hg as before denotes the sighra-hypotenuse. Recalling that A () /60 =
A o(®), we can see that the final expression in Equation 9 is identical to the formula

d
for v stated in Equation 8, up to the equivalence of the derivative e (o) with its
Ks

finite-difference approximation Ao.
The corresponding rule for true velocity v in Siddhantasiromani 2.39 prescribes

[SastrT 1866, 54]:
Upg - Coso

Hg
If we substitute va, = ¥y + vcg into this formula, we obtain a rule identical to that
of the Brahmatulyasarani in Equation 8 except that it appears to use a different

V=v4g — (10)

scale factor for the anomaly velocity v,:

Vo - Coso Coso
U—’l_)M—i-’l)HS—HSH,S—’I_)M—F’l)HS<1— Hg). (11)

In fact, the two multipliers in Equations 8 and 11 are mathematically equivalent, as
we show by further manipulating the expression for the sighra-equation difference
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derived in Equation 7:

. rs% + Rrgcos kg
——(arcsin(sino)) =

A
7 drg rg? 4+ 2Rrg cos kg + R?

Q

rs? 4+ 2Rrgcos kg + R? — (Rrgcos kg + R?)
rs?2 + 2Rrg cos kg + R?
B Hg? — (Rrgcoskg + R?)

Hg?
R(R+rgcoskg) R R+ rgcoskg
-1 5 =1-———= =1-—-coso
Hg Hg Hg Hg
_ 1_COSO'

Hg

It is not clear exactly how the relationship between these two attested forms of
Coso
Hg
successors. It could easily have been noticed that their behavior is qualitatively

the scale factor, Ac(® and (1 — , was understood by Bhaskara and his

very similar, as both are zero when the sighra-equation is at its maximum and have
their largest absolute value when the planet is at perigee: i.e., c = 0 so Coso = R
and Hg takes its minimum value R — rg.

The Karanakutuhala modifies the Siddhantasiromani formula to the following
expression:

Usg - Sine-difference(c) 40
Hg 7

This algorithm, like its counterpart for the manda-derived velocity correction dis-

V=10A4 — (12)

cussed in verse 5 (Equation 2), merely replaces the Cosine of the equation o by the
appropriately scaled Sine-difference for the 10° interval in which o falls, thus:

Sine-difference(c) - R Sine-difference(o) - 120 Sine-difference(o) - 40
Coso ~ § - = = .
max. Sine-difference 21 7

The graph on the left in Figure 10 compares the exact and approximate versions
of the velocity-correction term from Equations 11 and 12 respectively. (Note that
the sharp discontinuities in the approximation occur where the $ighra-equation o
changes its 10° interval). The graph on the right compares the Siddhantasiromani
version to the values in the Brahmatulyasarani.

We presume that the author of the Brahmatulyasarant algorithm, or perhaps an
earlier innovator from whom he copied the technique, was familiar with the Karana-
kutahala formula for correcting the planetary velocity. This is corroborated by the
statement of the condition for retrograde velocity in verse 9, which is clearly heavily
indebted to the corresponding Karanakutuhala verse.
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Figure 10: The sighra velocity correction in minutes per
day for 0-180° of $ighra-anomaly for Jupiter:
Left: The Siddhantasiromani formula (green)
and the Karanakutuhala approximation to it
(blue). Right: The Siddhantasiromani formula
compared to a sample of the values tabulated in
Brahmatulyasarani MS S45 ff. 12v—13r (red dots)
and their reconstruction (purple line).

The “four procedures” somewhat vaguely alluded to in closing are the alternat-
ing manda- and $ighra-corrections specified in Karanakutuhala 2.14 (see note 4),
following Siddhantasiromani 2.34cd-36ab [Sastr1 1866, 52]. Namely, the mean po-
sition is to be adjusted first by the appropriate manda-equation and then by the
Sighra-equation corresponding to the manda-adjusted position, after which the pro-
cess is repeated. In the case of Mars alone, each equation should be halved when
first applied, but not thereafter. The Siddhantasiromani prescribes iteration of the
alternating corrections for all star-planets until their longitudes are fixed.

Verse Ten: Correction for Mars’ manda-Apogee

bhaumasukendrasya padasya jata-
gamyasya bhagah phalavat phalam ca
kulira[na]kradigate svakendre

hinadhikam spastam asrnmrdiiccam || 10 ||

The degrees of the past [or] future [part, whichever is smaller,] of the quadrant of the
sighra-anomaly of Mars are like [the argument of an] equation [in the table of manda-
apogee correction for Mars]. And the [corresponding| equation, when its own [sighra-]
anomaly is in Cancer or Capricorn, is [respectively] subtracted or added [to make| the
manda-apogee of Mars accurate.
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Verse Analysis

Meter: upajati.

The manuscript has mamdasya instead of padasya, suggesting that a scribe at
some point misread ma for pa and then added an anusvara to obtain a familiar term
at the expense of the meter (and the sense). We have supplied the first syllable of
the word nakra (or perhaps it was originally makra in error for the better-known
synonym makara “crocodile, sea-monster”?) for the zodiacal sign Capricorn.

Technical Analysis

As we reconstruct it, the Brahmatulyasarant verse is largely borrowed from the
corresponding Karanakutihala rule [Plofker forthcoming, ch. 2].> It amounts to
multiplying the arc between the §ighra-anomaly of Mars and the closest integer
multiple of 90° by the scale factor 23—0 or 9 arcminutes per degree. The result is
applied to displace the longitude of Mars’ manda-apogee backwards or forwards
in the ecliptic, depending on whether the planet is in the half-circle of anomaly
centered on opposition or in the one centered on conjunction, respectively. At its
conjunction, opposition or quadrature there is no correction to the manda-apogee,
while the correction is maximum (0;9° x45 = 6;45°) when the anomaly is an odd
multiple of 45°.

Qualitatively, this adjustment has the effect of moving the manda-apogee towards
the planet at the octants around conjunction, which decreases the speed of its mo-
tion, and away from the planet at the octants around opposition, which increases its
speed (or strictly speaking slows down its retrograde motion). Bhaskara evidently

derived the rule from an algorithm in the Siddhantasiromani in which the scale
6;40

factor <S745> is applied to the Sine of the past or future arc of the quadrant of
in

Sighra-anomaly. This normalizes the absolute value of the manda-apogee correction
term to a maximum of 6;40° at the octants of §ighra-anomaly, rather than 6;45° as
in the Karanakutahala/Brahmatulyasarani version.

Bhaskara’s commentary in the Siddhantasiromani says of this correction merely

5 Karanakuthala 2.5 [Mishra 1991, 20; Rao and Uma 2008, S17] (compare Siddhantasiromani
2.24-25 [Sastri 1866, 46-47)):

bhaumasukendre padayatagamya-
svalpasya lipta khakhavedabhaktah ||
labdhamsakaih karkimrgadikendre

hinanvitam spastam asrnmrdiiccam ||5]]
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Figure 11: The table of the apogee-longitude correction for
Mars for argument values 0-45°, beginning in the
center of the page (MS 545 f. 7v).

atragama eva pramanam, i.e., it is the quantity prescribed in the received tradition.
Its origin and efficacy are discussed in more detail in Duke [2005]. Figure 11 shows
its tabulated values as they appear in MS S45.

Colophon

iti brahmatulyasaranislokah ||

Thus, the Slokas of the Brahmatulyasaran.

Post-Colophon: Astrological Procedure

candrarasau kalam sarve dvadasair bhagam 3haret ||
yatrodvahe Subhe karye candravasthah parityajet ||1||

pravasanastamrtatajayakhya
hasyaratikriditasuptabhuktah ||
jarahvayah kampitasusthitam ca
mesadimukhya himagor avasthah |[1||

In every zodiacal sign of the moon, one should divide the minute [and?] degree [? of
longitude] by twelve. [The remainder gives the number of the lunar avastha or “status.”]
When a journey or marriage is to be made auspicious, the avastha of the moon should
be disregarded.
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[Those| called journey, loss, immortality, victory; laughter, delight, play, sleep, eating;
[that] called old age, and trembling [and] comfort; are the states (avasthas) of the moon
starting from the beginning of Aries.

The word avastha is a technical term in Sanskrit astrology meaning “status” or
“situation”; the avasthas are thought to predict certain events or activities indicated
by their names. Our author seems to derive the avastha number by the following
method, of which variant forms are still practiced in modern popular jyotish or
Indian astrology. Namely, the numbers of the degree and minute of the zodiacal
sign occupied by the moon are arithmetically combined in some fashion not entirely
clear from the rule as stated, and the resulting integer is divided by 12. Evidently
it is the remainder from this division that designates the number of the avastha.

Another list of twelve lunar awvasthas, mostly with quite different names, is sup-
plied in the astrological work Phaladipika of Mantresvara (ca. fifteenth century or
later?).% Also unlike our present author, Mantresvara assigns the lunar avastha at
the desired moment of nativity, query, etc., according to the integer part of the quo-
tient from dividing the moon’s position in the cycle of constellations (interpreted in
the units vighatikas of which there are 3600 in the cycle) by 300.

Scribal Signature

iti likhitam malGkacandrena ||

Thus, (this text) was written by Malukacandra.
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