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An Arabic Algebraic Compendium of 1000 CE

Jacques Sesiano

Abstract

The manuscript Mashhad Astan Quds 5325, containing the only copy of an anonymous
treatise going back to CE 1004/5 (395 H), presents the elements of algebra required in
order to solve problems of application. It differs from previous treatises in that it has
an elaborate theory on arithmetical operations involving numerical roots (including, in
addition to square roots, cube and fourth roots). It also gives geometrical demonstrations
of the operations and formulae for solving second-degree equations, and anticipates
higher-degree equations, which were to be dealt with geometrically a century later by

‘Umar Khayyam.
I Introduction

I.1 Generalities

The historian and philosopher Ibn Khaldun wrote in his Muqgaddima that the first
two authors treating algebra (in Islamic times) were al-Khwarizmi (c. 820) and then
Abu Kamil (c. 890).! In Khwarizmi’s largely accessible (and probably not very
original) Short Account of Algebra are already found what were to be the three main
characteristics of early mediaeval algebra.

First, and unlike in the Greek algebra of Diophantus, there is a complete absence
of symbolism. Everything, including numbers, is expressed in words. Only a few
words, such as those for the powers of the unknown, have a specific meaning in
algebra: “thing” (shay’) is our = (sometimes also jidhr, “root”), “amount” (mal) is
22, “cube” (ka‘b) is 23. In later authors the higher powers are expressed, as were
the Greek ones, by combining the words for 22 and 3.2

A second characteristic of mediaeval algebra is the recourse to geometrical figures
to illustrate the rules of algebraic reckoning or the solving formulae for equations. In
that sense, algebra can be said to have not yet fully gained autonomy; geometrical

! Edition of the Arabic text by Quatremere (1858, III, 98); translation by de Slane (1868, III,
136-137).

2 Since any positive integer N > 2 may be represented in the form 2n; + 3ns (n1, n2 not negative

N

integers), any power z° may be expressed by repeating ni times the word for 22 and ny times the

word for z5.
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proof was to remain, for centuries in fact, the criterion of mathematical truth in
algebraic relations.

A third characteristic, which was of ancient origin and, like the second one,
to last until the Renaissance, is the reduction of the (then) algebraically solvable
equations to siz specific types with positive coefficients and at least one positive
solution, namely the three equations called “simple” (mufrada), which are ax? = b,
ar? = ¢, bx = ¢, and the three equations called “compound” (mugtarana), which
are ax® 4 bxr = ¢, ax? + ¢ = bz, ar® = bx + c, the latter mostly found in their
reduced forms (2% + pr = ¢, 22 + ¢ = pz, 2% = pr + q).

The geometrical figures used to justify the formulae of the compound equations
may be different in nature. Khwarizmi’s figures are mere illustrations and do not
require knowledge of Euclid’s Elements of Geometry, the basic mathematical tool in
ancient and mediaeval times. (By the way, although the use of geometrical figures
suggests a Greek influence, Khwarizmi does not mention Euclid at all.) The same
holds for his contemporary Ibn Turk. Abu Kamil has, on the other hand, two
kinds of illustration: one is similar to his predecessors’ but in the other Euclid is
mentioned and reference made to the two theorems Flements I1.5 and I1.6, of which
this second kind of illustration is a direct application. That Euclid’s name and
theorems should appear in Abu Kamil’s Algebra but not in Khwarizm1’s is, by the
way, hardly surprising: Khwarizm1’s treatise is elementary and does not suppose
any prerequisites in (the then) higher mathematics, whereas Abu Kamil’s Algebra is
written specifically for mathematicians, that is to say, people trained in the study of
Greek mathematics, chiefly Euclid’s Elements. Note that the demonstrations using
Elements I1.5 and I1.6 are also found in a short text by Thabit ibn Qurra (836-901)
(Luckey 1941).

The purely illustrative figures, as well as those based on Euclid’s theorems I1.5
and I1.6, are used to explain the general formulae of compound equations; but they
do not represent graphically the solution of a specific equation since the length x
has been set to begin with. The Elements of Euclid, however, serve in addition to
actually draw the solution and represent it as a segment of a straight line. To do so,
three theorems of the Elements are used. The first, auxiliary one is the construction
of the root of a given quantity (that is, the root of a given segment of a straight
line). Suppose the given length to be a (Fig. 1). We add to it the unit segment and
describe the circle with diameter a + 1. The height at the extremity of a is then
V/a. This construction, an application of the theorem of the height in a right-angled
triangle, is Elements 11.14.

The other two theorems are Elements VI.28-29, which teach one how to construct
(“apply,” mopoBdilev) on a given segment of a straight line a rectangle (generally,
a parallelogram) equal to a given rectilineal figure but, relative to the segment of
a straight line, in excess or deficit by a square. To use these theorems, the three
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Figure 1: Geometrical construction of the square root of a
given segment

equations are considered in the form of products:

@ tpr=q — x(z+p)=q
2 +g=pr — x(p—1)=q
P =pr+q — z(x—p)=q
Since, in the treatise we shall examine, this construction displays only the segment

of a straight line, thus without representing the rectangle and the square, here we
have supplied these elements.

C G H

Figure 2: For the equations z2 + pz = ¢ and 22 = pz + ¢

Consider first the equation z?+px = ¢, with p and ¢ thus given positive quantities.
Let us draw AB = p, and let I be its midpoint (Fig. 2). So AI = IB = £, and we
construct on IB the square CB = (g)z.3 On the base CG of this square, we describe
the larger square CE = (%)2 + ¢, which we know since we know the quantity (%)2 +q
and can thus represent it as a segment of a straight line, of which we may then take
the root as seen above. The applied rectangle is then AE and the solution of our
equation is BD = BF. Indeed, the applied rectangle AE, being z(xz + p), equals
@, which is also the sum of the areas ID 4+ DF + FG. Furthermore, as we see, this

known area exceeds AD, the rectangle on the given straight line AB, by a square

3 In Greek and Arabic texts, rectangular figures are often designated by the letters at opposite

angles.
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area, namely BE. We may observe that the given number, ¢, which is the sum of
the areas ID, DF, FG, forms a gnomon around the square (g)2.4

2 = px + g, the construction is the same. But this time the

For the equation x
solution x is the segment of straight line AF. For, since BF =FE, we have indeed

AF - BF = z(z — p) = ¢, and the square in excess is BE.
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Figure 3: For the equation 22 4+ q = px

Consider next the equation 22 4 ¢ = pr. Once again, we put (Fig. 3) AB = p and
describe CB, the square on its half. Next, we construct the smaller square CE =
(g)2 — ¢q. The difference between the squares CB and CE is ¢, which is thus the sum
of the two areas ID and DK, or also, since the two rectangles Al and DK are equal,
the sum of ID and AI, thus AE. In that case, two applied rectangles z(p — x) = ¢
fulfil the condition: AE, corresponding to the solution DE = DB = z; and DG, equal
in size to the previous rectangle, corresponding to the solution AD = DH = 2’. The
deficient squares are then, respectively, EB and AH.

1.2 Description and Contents of the Manuscript

The two kinds of figure we have mentioned, as well as the geometrical construction
of the solutions, are found in an anonymous treatise written in 1004/5 (395 of the
hegira, see the colophon) and extant in a copy made in 1185 (581 of the hegira,
see title page), namely MS Mashhad Astan Quds 5325. I was able to examine this
manuscript several times when, in the years 1985-1990, my Iranian colleague A.
Djafari Naini and myself were visiting the main libraries in Iran. This manuscript,
edited here completely, was then used by me in three studies dealing with the treat-
ment of quadratic equations in Arabic algebra.’

4 A gnomon (yvéduwv) is the figure left when from a parallelogram (here a square) a similar figure
has been taken from its corner. See Elements 11, def. 2.

5 See Sesiano (1999, 83-85; 2002, 193-201; 2009, 79-81).
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The manuscript comprises 23 leaves 17.1x6.3 cm in size, with the text taking up
14.8x4.7 cm, and 28 lines on every page except for the first with 4 lines and the last,
25; it reached the library as an endowment (wafq) made in 1067 H by a certain Ibn
Khatun. The copy is in excellent condition, in a good hand (naskh?); in a few places,
however, the paper has been torn and gummed together with (opaque) sticky tape.
Headings of chapters or sections are sometimes in bold script, but mostly in red
ink; with some being inappropriate, perhaps because an older copy omitted them
(altogether, if not partly) since they were supposed to be added later, at the time
of the rubrication.b

The first leaf of the progenitor has been lost, as mentioned after the title (fol. 1"
“some parts are missing from the beginning of this copy”), and repeated, this time
in Persian, by a modern hand, at the top of fol. 2" (“the beginning of this treatise
is missing”); fol. 1V is blank (excepting additions by librarians). The title on the
actual fol. 17 is a later addition, which is inadequate. First, as pointed out to me by
a referee, it alludes to numerical (application) problems, whereas the text itself says
explicitly that it will not deal with that topic (see translation, A.862-863). Second,
the (presumed) title is repeated at the end: Foundations of Algebra and Aspects of
the Simple and Compound Equations on which Are Based the Kinds of Numerical
Problems Subject to Exact General Procedures (A.860-861). The loss of the original
first leaf may explain why the name of the author has disappeared. Note that this
author does not give himself credit for anything in the text, and we cannot even
guess his identity. Whatever the case, he is obviously very competent, and gives us
a fine picture of the state of algebra around 1000 CE.

There are no traces left by readers. But it appears that an earlier copy had some
marginal remarks, now wholly incorporated into the text. We have bracketed most
of them.” Two main early readers were particular active. Traces of the first one are
numerous in the first pages, with attempts to draw a parallel between operations
with powers of the unknown and arithmetical operations with fractions; then this
reader calmed down for he realized that our treatise was too advanced for him.
Another interpolator intervened in the last chapter, on equations (see note 248); he
did not make any interesting comments either.

6 See notes 88, 93, 203, 264, below.

7 See the following lines of the Arabic text (and footnotes in the translation): 7-8/n.24, 10
& 12/n.25, 14-18/n.26, 19-22/n.28, 33-37/n.34, 56, 70, 73-74/n.45, 95-100 & 111-114/n.50,
105-106, 124, 150, 152-153, 234-237/n.101, 240/n.104, 241, 260, 298-299/n.128, 408, 410 &
412/n.170, 421 & 422/n.170, 429, 436 & 441/n.170, 507-511/n. 206, 567, 569, 625, 626/n. 234,
629-630/n.235, 636/n.238, 639/n.240, 654/n.245, 661/n.248, 665-666/n.251, 699/n.262, 733—
734/n.275, 768/n.290, T77/n.294, 791-798/n.298 & (included) 795-797/n.301, 811/n.306,
839/n.316, 850/n. 321.
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Lacunae are relatively rare, and we have enclosed them in angular brackets.®
In an earlier copy, rectifications were sometimes indicated in the margin but later
copied in the wrong place; see 104-106/n.51, 639/n.240, 777/n.294. Uncorrected
places are rare.? Finally, the correction of a few mistakes or omissions bears witness
to a copyist who carefully verified his copy.'® But he did not, or not always, follow
the computations (e.g. A.370). A few comments on the Arabic will be found in
footnotes.!!

The manuscript Mashhad Astan Quds 5325 is described in Gulchin-Ma‘ant’s
eighth volume of the catalogue of the mathematical manuscripts in the Mashhad
Shrine Library (Fihrist 1971, No. 146). According to an earlier catalogue, this
dlas 9 > > L, is a copy of Abu Kamil’s Algebra (Fihrist 1926, 111, No. 98), an
attribution already invalidated by the date of its composition. S. Chalhoub, who
edited the main part of Abu Kamil’s Algebra (Chalhoub 2004), repeats this and
adds a photograph of the first two and last two pages of the Mashhad manuscript
(fol. 1" (title) & fol. 27; fol. 23V & fol. 24"); by some extraordinary oversight he
did not notice that the text on these three pages does not correspond to any pas-
sage of what he was editing. Chalhoub also provided a German translation of Abu
Kamil’s treatise, which in fact reproduces the translation of the Hebrew version of
Abii Kamil’s Algebra (Abu Kamil 1935).12

Let us now summarize the contents of the treatise. It is divided into four parts,
each containing several paragraphs. As said, only one leaf appears to be missing;

8 Lines 79, 84, 164, 220, 290, 322, 359, 370, 390, 451, 457, 475, 477, 483, 504, 574, 612, 624, 626,
635, 638, 640, 726-727, 741, 743, 755, 767, 769, 776777, 779, 786/n. 297, 815, 830.

 Lines 53/n.37, 104/n.51 (see above, “rectifications”), 424/n.175, 475, 490-491/n.199, 625-
630/n.233, 768/n.290 (see above, “incorporated interpolations”), 786/n.294 (see above, “lacunae”),
850/n.321.

10 E.g. words corrected after erasure (e.g., see MS, al-nisf (post.) and al-magadir, line 18), or
corrected above the line (Il. 700 & 796) or just added (lI. 782, 783, 808, 809); a word originally
written twice (I. 138) has been crossed out in red, thus at the time of rubrication.

' See below, notes 35, 37, 41 & 46, 47, 84, 85, 94-96, 100, 109, 117, 165, 182, 187, 213, 214, 225,
243, 247, 255, 262, 265, 270, 290, 295, 299, 302, 311, 314, 319.

12 On the works of Abu Kamil, and the real or alleged mediaeval Latin and Hebrew translations,
see our additions to the reprint of A. Anbouba’s biography of Abu Kamil, following the edition of
Abtu Kamil’s practical geometry (Anbouba 2014). Note that in what follows incidental references
to Khwarizm1’s Algebra will be to the pages of Rosen’s 1831 edition (al-Khwarizmi 1831, transla-
tion/text); for Abu Kamil’s Algebra, the references are, for the Arabic, to the folio of the manuscript
printed in facsimile (Abu Kamil 1986), with fol. 2 of the MS corresponding to p. 2z — 1 of the
facsimile—in Chalhoub’s edition (Abu Kamil 2004), 2/3 means the separation between fol. 1V and
fol. 27), for the Latin translation to the initial line in our edition (Abu Kamil 1993), for the Hebrew
translation to the page of Levey’s (not always reliable) edition (Abu Kamil 1966).
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it must have dealt with the first two powers of the unknown, characterized by the
proportion 1 : x = x : 2. Now, at the beginning of his (later, end of the 11th-

century) Algebra, ‘Umar Khayyam introduces the powers of the unknown as follows:

It is usual among the algebraists in their art to call the unknown which is to be de-
termined “thing,” its product into itself “square” (lit. “amount,” mal), the product of
its square into the thing “cube,” the product of its square into itself “square-square,”
the product of its cube into its square “square-cube,” the product of the cube into itself
“cube-cube,” and so on. It is known from the work of Euclid on the Flements that all
these powers are in continued proportion, that is, the unit is to the root as the root is to
the square and as the square is to the cube; therefore, the number is to the roots as the
roots are to the squares, as the squares to the cubes, as the cubes to the square-squares,

and so on.'?

This is an allusion to the definitions 18 and 19 of Book VII of the Elements and
Proposition 8 of Book IX, where the basic powers, x2, 23, are defined and the
continued proportion 1 : z = 2 : 22 = 22 : 23 = ... is set. Now the subject of the
missing first paragraph of our treatise, as confirmed by its remaining part, was to
define the first two powers of the unknown using the above proportion. Note, finally,
that the missing part might be less than the two sides of a leaf: readers’ remarks
then incorporated into the text may have been numerous (marginal readers’ remarks
are particularly abundant at the beginning of treatises).

Apart from the first leaf, the extant treatise is complete. In its first part (fol. 2" —
4Y), the reader is taught the usual Arabic denominations of the first two powers of
the unknown: thus (§1), as said, number, thing or root (our z) and square (x2);
next (§2) the cube (23) as the product of the last two. From the names “square”
and “cube” are then formed the next powers: square-square, square-cube, cube-cube
(§3). This just follows the Greek system as used by Diophantus and defined in the
introduction to his Arithmetica.'* After expounding the divisions of these powers
among themselves (§4), whereby are introduced the inverse powers of the unknown
(with the same denominations as the previous ones, but preceded by “part of”), the
reader is taught how to multiply these inverse powers (§5) and (§6) divide them.

The second part (fol. 4" —6") considers the operations with binomial expressions
consisting of a number and some multiple of the unknown (our z). Pairs of such
expressions are successively added (§1), subtracted (§2), multiplied (§3), divided
(§4, with the divisor restricted to a single term). Since the sign before each term may

13 Woepcke (1851, 6-7/4). The “number,” that is, m instead of 1, thus m : mz = mz : mz?=....
This (for us banal) distinction will also occur in our treatise.

4 On the Greek system and its adaptation in Arabic texts, see the edition of the Arabic Diophantus
(Sesiano 1982, 43-46).
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vary, we learn how to deal with positive and negative coefficients and, in the case of
multiplication, we are taught the rule of signs. The identity (u—v)? = u?+v?—2u-v
is demonstrated geometrically, as will be many identities and formulae subsequently.
As observed earlier, this is a characteristic of mediaeval algebra.

Much attention is devoted in the third part (fol. 6¥—16") to computation with
numerical roots. First (§1) how to take multiples of square, cube, fourth roots, thus
how to raise the factor to the appropriate power in order to bring it under the root.
Since just the same applies to taking the fraction of a root, the treatment is shorter
(§2). The addition of roots (§3) is then explained for square and cube roots, and
the relevant identities, namely

\/ﬂ+\/5=\/u+v+2\/u‘vand

Ju+ v = f/u+v+€/27u2~v+\3/27u-02,

are explained and demonstrated geometrically.'® The same is done for subtraction

(§4), thus with the corresponding identities

f—ﬁ:\/u+v—2\/u~vand
\3/57%:{’/(u+v327u-v2)7(v+\/327u2'v).

(Their descriptions are good instances of verbal algebra, somewhat difficult to fol-

low for a modern reader.) We are then taught the multiplication of square, cube
and fourth roots, between them or among them, sometimes with a coeflicient, and
the basic relation (y/u - +/v = y/u-v) is demonstrated geometrically (§5). This
third part ends with the more restricted case of division (§6); division of monomial
or polynomial expressions by a single square, cube or fourth root follows a path
analogous to that for multiplication; though not so when there is in the divisor a
polynomial expression, as pointed out by the author: this is possible, according to
him, in just one instance, namely if the divisor is the sum of a number and a square
root, whereby we may, using multiplication as a device (hila), change the divisor
into a rational quantity.

The fourth part (fol. 16" —23") is entirely devoted to first and second-degree
equations. Since, as mentioned above, only positive coefficients and solutions are
considered in both ancient and mediaeval times, there are traditionally three forms
of simple and compound equations of the first two degrees: equality between two
terms in the first case, between one term and the other two in the second.'® For
the “simple” (binomial) ones (§ 1), numerical examples are given. For “compound”

15 Tn the second case the multiplicative factor is thus included in the root.
16 Whence, with positive coefficients throughout, bz = ¢, az? = ¢, az? = bx; az® + bz = ¢,

ax® + ¢ = bz, ax?® = bz + c.



SCIAMVS 24 Arabic Algebraic Compendium 49

(trinomial) equations, the author gives (§2) the solving formulae for the three kinds,
applies each of them to a numerical example, then explains each formula, first by an
illustration then by constructing the segment of a straight line corresponding to the
solution; but in the latter case, as previously said, without the given squares and
rectangles being actually drawn.

It is interesting to note that these elements of algebra, as described in Part I
and Part II of the present treatise, correspond exactly to the necessary background
already described in antiquity by Diophantus in the introduction to his Arithmetica.
Indeed, after defining the powers of the unknown, he proceeds with their multipli-
cation, then explains the multiplication of inverse powers, either among themselves
or with the powers already defined, then the rule of signs, and concludes:

Since the multiplications of the aforesaid powers have been distinctly explained, their
divisions are clear. Now it is appropriate that he who wants to go into that should
acquire practice in addition, subtraction and multiplication of the various powers, and
know how to add up additive and subtractive powers with different coefficients to others,
themselves either additive or also additive and subtractive, and how from a sum of
additive and subtractive powers others, either additive or also additive and subtractive,

are subtracted.'”

The purpose of our treatise is clearly to serve thus as an introduction to the
use of algebra before solving algebraic problems, just as Diophantus’s introduction
urged the student to familiarize himself beforehand with algebraic reckoning. Our
treatise’s subjects differ from those mentioned in Diophantus’s introduction in Part
III, on operating with numerical roots, which is irrelevant for the Arithmetica since
there the required quantities must be rational. Diophantus then proceeds to explain
how the equation resulting in a problem is changed to one containing either two
or three different powers, thereby defining the two operations known in Arabic as
restoration (=) and reduction (k).

There is at the end of our treatise (fol. 23V —24") an allusion to higher-degree
equations with either three or four terms.'® Here, for the first time as it seems, the
various types of cubic equations with positive terms are all listed (except for the first,
banal case, of 2% equal to a number). ‘Umar Khayyam thought he was the first to

17 Kol 16V TOAOTAIGLUOUEY 0oL Ga@nVcVévTny, gavepol eiowv ol peploiol &Y Tpoxelévey eldév
(b)), xah@c obv Eyel évapyoduevov tiic Tpayuateiag cuvdéoel xol dpoipéoel xol TOANATAACIACUOLS
tolg mepl Tt 10N yeyuuvdoda, xol née eldn Ondpyovta xol Acimovta pf dponAndfi npocldfic Etépolc
eldeoty, ftol xal adTolg Umdpyouaty, 1) xal ouolwe Undpyouct xol Aeinouaot, xal &S And LTUEYOVIWY
eld®dY ol €tépwy Aeimdviny Leéng Etepa fitol Umdpyovta, 1} xol oupolwg Umdpyovta xol Asimovta
(Tannery 1893, 14).

'8 We have analyzed this part in a commemorative volume on ‘Umar Khayyam (Sesiano 2002).
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have compiled such a list.'? Our author notes that they do not admit of “numerical
procedures” (thus formulae) as do the trinomial second-degree equations, but only
of a geometrical solution using conic sections. The Greeks had solved them that way
in a few cases, some others were added at about the time of our author, and ‘Umar
Khayyam completed these attempts to obtain the positive solutions, using circles,
hyperbolas, parabolas; see Fig. 4 below.2’

1. ¥ =c 2 positive, zo3 complex two parabolas

2. ¥4+br=c 21 positive, x93 complex circle and hyperbola
3. 2+ c=bx x1, positive or complex, x3 negative  parabola and hyperbola
4. 2 =br+c x1 positive, o3 negative or complex  parabola and hyperbola
5. ¥ +art=c x) positive, xs 3 negative or complex  parabola and hyperbola
6. 2% 4+ c = ax? 21, positive or complex, x3 negative  parabola and hyperbola
7. ¥ =ar?+c 21 positive, 293 complex parabola and hyperbola
8. a3 +ax’+br=c ax positive, 2,3 negative or complex circle and hyperbola
9. 23 +ar’+c=br 1, positive or complex, 3 negative two hyperbolas

10. a3 +br+c=ax? 1, positive or complex, z3 negative circle and hyperbola
11. 23 =az® +br +c ; positive, 153 negative or complex two hyperbolas

12. a3 +azx?=br+c 1z positive, 153 negative or complex two hyperbolas

13. a3 +br=az®+c¢ p positive, 253 positive or complex circle and hyperbola
14. 23+ c=a2? +bx 5 positive or complex, x3 negative two hyperbolas

Figure 4: Khayyam'’s solutions of third-degree equations

The present treatise is in general quite clear, and any reader could benefit from
studying it. There are, however, two weak points which make the relevant parts
confusing.

First, there is the author’s insistence on defining the successive powers of the
unknown using the continued proportion 1 : z =z : 22 = 22 : 28 = ... . It is
thus introduced to justify things which are normally self-evident to any (11th- or
21st-century) reader. See notes 208, 230, 236, 320.

Second, the formulae for solving trinomial second-degree equations apply to those
with the coefficient of the highest power equal to 1. Thus the question arises as to
how to change the given equation to this canonical form. If, in our terms, the given
equation is axz? 4+ bz = ¢, we shall just multiply each coefficient by % and thus get
as the required new form z? + gx = 2; the computation is merely less simple if
a is not an integer but contains a fraction. There is one single example where the
multiplication by the inverse coefficient is performed (note 253, below). In the other

instances the author uses the method of the false position—which often proves to

19 See the beginning of his Algebra (Woepcke 1851, 3/2).

20 The algebraic formula for a positive solution of one type of the third-degree equation (case 2
above) was first attained towards the very end of the 15th century—curiously enough by a formula
of the kind which had been used in ancient school algebra for solving quadratic equations (see

Sesiano 2009, 130).
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have been a plague in mediaeval mathematics. The idea is that the coefficient a
will be changed to unity by either adding or subtracting from it some fraction g of
it. Take then some false position a—conveniently chosen (normally so as to cancel
the denominator)—and calculate first (considering here the addition of a fraction,
thus a < 1) (1 + %) a, then multiply it by a. Dividing then the result, a (1 + g) a,
by the false position «, we shall obtain a (1 + 5), in theory equal to 1.2! The other
coeflicients must then be multiplied by 1+ g as well. See below notes 219222, 226,
228, 232, 233, thus including binomial equations for which such a transformation is

even more absurd.

21 But 2 in one instance (note 220), for the author adds a fraction instead of subtracting it.
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IT Translation

Prefatory Note

Parentheses are used for our interventions in order to facilitate reading; brackets
enclose presumed interpolations, while angular brackets, as stated (note 8, above),
designate presumed lacunae.

The division of the text into four “parts” with paragraphs is perfectly adequate.
But, for convenience, we have added references to the lines of the edited Arabic text,
e.g. (A.6-13).

As usual with early Arabic algebraic treatises, everything, including numerals,
is expressed in words. One of the referees insisted that all the words in Arabic be
rendered by words, as is customary for Arabic literary texts. I agree that this would
be justified, both for reasons of coherence and conformity. Considering, however,
that the readers, if any, will be people with some training in mathematics rather
than Arabists or Classicists, we have refrained from adopting a completely literal
translation: mathematicians would just stop reading after a few pages, and nobody
could blame them for that. In order, however, to account for the two points of view,
we have kept a literal translation for the statements of calculations, but adopted,
for the subsequent reckoning, numerals, even sometimes algebraic signs. Indeed, the
translation de verbo ad verbum would be unpleasant for anyone wishing to have an
idea of the substance of the text: he will no doubt prefer to read (A.535-536) “5+ g
minus the square root of 3 + 811” than “five and five ninths minus the root of three
and seven parts of eighty-one parts of one”; likewise, “the ratio 1 : 2”7 will stand
for “the ratio of one to two”; likewise, mal for the second power of the unknown
will be translated by “square” rather than “amount”; likewise, “fourth root” was
preferred to “root of the root,” and, finally, “plus” (or even +, as here above) was
adopted instead of the insipid “and.” For words rendered by a modern mathematical
term, we have added the transcription of the Arabic at their first occurrence (the
index of Arabic words, in Part IV, giving the other occurrences), or discussed it in a
footnote. For those who will find the text indigestible anyway, the footnotes provide
a summary.
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(1") [Treatise on algebra and numerical problems,

taken from some earlier scholars, aiming at clarity

The writing of the copy was completed
in the year five hundred and eighty-one

Some parts are missing from the beginning of this copy]

(27) [The beginning of this treatise is missing]??

( First part
On the proportional powers. This is divided into six paragraphs
§ 1. The three proportional quantities >23

(A. 6-13) (...) according to the same ratio beginning with 1. Thus if the first of
the three quantities (al-magadir) is 1, the second will be a root (jidhr) and the third,
a square (mal). [As to the root, it is any number or fraction you wish to multiply

by itself, while the square is the result of multiplying the root by itself.]?4

Then if the first of the three quantities is larger than 1—which is what we shall
call a number (‘adad)—the second will be roots in the same quantity as the quantity
of units in the [first] number, and the third will be squares in the same quantity as
well. Likewise, if the first of the three proportional quantities (al-magadir al-thalatha
al-mutanasiba) is a fraction smaller than 1, the second will be a part, or parts, of
the root, according to the ratio of the [first] fraction to 1, and the third will likewise
be a part or parts of the square, according to the same ratio as well.??

(A. 14-23) Example(s).26 [(i) If we put 2 for the root, the corresponding square
will be 4 and the ratio, (which was) 1 : 2, will be the same as the ratio 2 : 4.

(7') Likewise, if we put 3 for the root, the corresponding square will be 9 and the
ratio, (which was) 1 : 3, will be the same as the ratio 3 : 9.

22 In Persian, thus by a modern hand.

23 Titles conjectured.

24 An early reader considered “root” and “square” to refer to numerical quantities; whence also the
subsequent interpolations.

25 Since 1: z = x : 22, then also m : mz = mz : ma?, with m any integer or a fraction (“parts or
parts,” that is, % or %, here k < 1). The word “first” (bracketed, twice) probably originates with
an early reader (the numerical term is the “first” of the three proportional quantities).

26 Examples 7'~ are in line with the above interpolation. The genuine examples i, ii illustrate

the fundamental proportion m : ma = max : ma?.
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(7i") (Now) for the fractions: if we put for the root %, the corresponding square will

be i and the ratio, (which was) 1 : %, will be the same as the ratio % : i}

(i) Following the same reasoning,?” if the first of the three quantities is two units, the
second will be two roots [equal to one another whatever their numerical (value)]?8
and the third will be two squares [each of them arising from the multiplication of

one of the two roots by itself].

(#) Likewise for the fractions: if we put for the first of the three quantities 3, the
second will be half a root [(thus) as much as was the fraction of 1] and the third will
be half a square [(thus half) of the whole square arising from the multiplication of
this root by itself].

Then likewise for whatever (integral) numbers and fractions.

§2. On numerical operations involving the three proportional basic ele-
ments

(A. 26-37) Concerning (2V) knowledge of the types of treatment (anwa* al-a‘mal)
involving the three aforesaid proportional basic elements (al-usul al-thalatha al-
mutanasiba) before (considering) the(ir) equality?” there are six operations (ahwal),
namely adding, subtracting, taking a multiple, taking a fraction, multiplying and
dividing.3°

As for the first four operations involving them, namely adding, subtracting, taking
a multiple and taking a fraction, the treatment for all of them is just like the corre-
sponding treatment for plain numbers (al-a‘dad al-mutlaqa), without any difference.
(Indeed,) neither the increment (resulting) from adding and taking a multiple nor
the decrement (resulting) from subtracting and taking a (proper) fraction changes
the kind (jins) (of power), though it changes its coefficient (kammaiya).

In the case of multiplication, it happens in many situations that the root is
multiplied by the square, with both being unknown; then the result is called “cube”
(muka“ab), and it is the third (term) in the proportion involving (as median terms)
root and square.?! [Indeed, for any four quantities in proportion the multiplication
of the first by the fourth equals the multiplication of the second by the third;>?

2T That is, the proportion 1 : & = z : 2 remains valid if the first quantity is m # 1.

28 This early reader did not fully grasp the meaning of a multiple.

29 Part IV (A.560-833), on equations. The “three proportional basic elements” are thus: number,
root, square.

30 With the multiplication of the two basic powers (x, £°) we shall learn the denominations of the
subsequent powers and their products (§§2-3), and, with the division, the inverse powers (§4) and
their products and divisions (§§ 5-6).

3Ll =2g?: 25

32 Elements VIL.19.
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and the first of these quantities is, as said, 1,3 and its multiplication by the fourth
will give the fourth (term) itself. For this reason, the result of the multiplication
of the root by the square, which are the second and the third, will be the third
(term) relative to these two in the proportion—that is, the fourth starting from the
first—and this is the aforesaid cube.]3*

(A. 38-47) These three names (asma’), namely root, square and cube, are the
simple names by means of which the (first) three proportional powers (tabagat)
(of the unknown) are designated. From their mutual multiplications arise other
successive powers following the same proportion, the names of which are compounds
of the three (basic) names we have indicated.3

Thus the square-square (mal al-mal), which directly follows the cube in the pro-
portion, results from the multiplication of the root by the cube or from the multi-
plication of the square by itself. Or else, the square-cube or the cube-square, which
directly follows the square-square in the proportion, results from the multiplica-
tion of the root by the square-square, or from the multiplication of the square by
the cube. Or else, the cube-cube (muka“ab al-muka“ab), which directly follows the
square-cube in the proportion, results from the multiplication of the root by the
square-cube, or from the multiplication (3") of the square by the square-square, or
from the multiplication of the cube by itself. Therefore, with this way of proceeding
by compounding (being obvious and our) being averse to prolixity, we (considered)
refraining from further comment.

§ 3. Multiplication of the proportional powers among themselves and
determination of the kind of power resulting

(A. 51-57) If we wish to multiply a square by a cube, we put together the de-
nominations “square” and “cube,” and say that the result of the multiplication is a

“square-cube” or a “cube-square.”36

If we wish to multiply a root by a cube, we take the number of times®” the root
has been multiplied by itself to give the cube, which is 3, add to it 1, because of the

33 “As said”: above, A. 6-7.

34 Superfluous.

35 The three “simple” (mufrada) names are as given (root, square, cube), and the names of the higher
powers are said to be compounds (mutarakkaba) of them. As a matter of fact, more Graecorum,
these higher powers are designated by means of the last two simple names only. The proportion

considered will now be extended: 1:z=z: 22 =2%2:2° =2 : 2 = 2% : 2% = 2% : .

36 22.43 = 2%, thus the fifth power of the unknown. One would expect this to follow the subsequent
definition of z*. But now the exponents are considered.
37 The text has ‘adad al-manzila, “number of the rank,” which we have, nolens volens, changed to

‘adad al-marrat. Below, the exponent will be designated simply by ‘dda, “quantity.”
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root, and divide the result, namely 4, into two parts each larger than 1. Such are 2
and 2—there is no other possibility. Then we take “square” for each 2, since, as we
have mentioned,?® the “square” results from (multiplying) a root by [a root] itself;

so we shall say that the result of the multiplication is a “square-square.”3?

(A. 58-64) Likewise if we wish to multiply a root by a square-cube: we take 5
for the square-cube—2 for the square and 3 for the cube—add to it 1, because of
the root, and divide the result, namely 6, into any two parts, provided that each be
(an integer) larger than 1. Say that they are 3 and 3; so we shall take “cube” for
each 3, the result being then “cube-cube.”*® Had we divided 6 into two other parts,
(thus) 2 and 4, and taken “square” for 2 and “square-square” for 4, and put that
together, (giving) “square-square-square,” three times, this would be possible; but
the expression “cube-cube” is shorter and more concise since there is one repetition
in it whereas in “square-square-square” there are two. That is how to proceed.

§4. Division of the proportional powers among themselves and determi-
nation of the kind of power resulting

(A. 68-75) If we wish to divide one (3Y) of the proportional powers by another and
determine the kind of the quotient, then, since dividing is the inverse of multiplying,
we shall subtract the quantity?' of the one closer to the root*? from the quantity of
the one which is farther; the remainder [the quotient] will be (the indication) of the
kind of that quantity.*3 If the divided power is the one which is farther from the
power of the root, the quotient will (itself) be a power; if the divided power is that
which is closer to the power of the root, the quotient will be a part of this (resulting)
power.** [The part of any power is named by the number of its units.]4> [That is, if
the root is two, its part will be a half, that of the square, a fourth, that of the cube,
an eighth, that of the square-square, half an eighth.] And so on proceeding likewise.

38 At the very beginning (A. 6-7 or missing part).

39 g 2% =23 = 2% = 22 . 22, Note the denomination of the power, which must not only be
a compound of the two words “square” and “cube,” but comprise the least number of words, as
asserted just below.

40 o 5 46 _ 23 .3

41 Thus, the exponent (the word ‘idda used here is hardly appropriate since it will be regularly
used for “coefficient” in what follows). Subtracting instead of adding: see, for the latter, § 3.

42 Thus, the lower exponent.

43 That is, it will determine the resulting power.

44 :T]; = z"~!, thus a proper power if k > [ but an inverse one if k < I.

45 Means that ﬁ is k parts of z'. Hardly by the author since this is irrelevant here. What follows,

by another early reader (probably the one already met several times), is even more so.
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(A. 76-85) Example(s). (i) If we wish to divide a square-square by a root, we
subtract the quantity?® of the root, namely 1, from the quantity of the square-
square, namely 4; the remainder is 3, which is the quantity of the cube; so we shall
say that the quotient is a cube. If the divided power is that of the root and the
divisor is that of the square-square, the quotient will be a part of a cube.

(77) Likewise if we wish to divide a cube by a square: we subtract the quantity of
the square, namely 2, from the quantity of the cube, namely 3; the remainder is 1,
which is the quantity of the root; so we shall say that the quotient has the power
of the root. If the divided power is that of the square and the divisor is that of the
cube, the quotient will be a part of a thing.4”

(di1) If we wish to divide a power by itself, the quotient will be the number 1, because
it is a division of like by like. That is how to proceed.

§5. Multiplication of parts of proportional powers among themselves and
determination of the resulting part of power

(A. 89-94) If we wish to multiply a part of a power by a part of another power
(4") and know of which kind is the power of the resulting part, we multiply the two
powers and determine the kind of the product as we did above;*® (taking) the part

of this (resulting) power will give the answer.*?

Example. We wish to know the result of multiplying a part of a thing, that is, a
part of a root, by a part of a square. We multiply a thing by a square, which gives
a cube, and take a part of it, thus a part of a cube. So we shall say that the result
of multiplying a part of a thing by a part of a square is a part of a cube.

(A. 95-100) [This is analogous to the multiplication of fractions by fractions, for
there we multiply the parts by the parts and divide the result by the product of the
two denominators (mukhrajan). And since here the parts in both the multiplicand
and the multiplier are one part, the result of their multiplication will also be one
part; and the division of this (unit) by the product of the two denominators, that
is (here), of the two powers, will be a part of this result. That is why we multiply

together the two powers and take a part of the result, which gives what is required.]*"

46 The exponent. Again, Arabic “dda.
47 Here “thing” is the usual Arabic algebraic denomination for our z (shay’), less confusing than

“root” since the latter is also used in the arithmetical sense.

48 Gee §3.

49 Since z* - ¢! = 2, s0 1% . ﬁ = zklﬂ‘

5 . . .

50 Since % . % = % whereas d%k . ﬁ = ﬁ, this analogy may not be wholly appropriate. The

same kind of analogy occurs at the end of the next paragraph. Both must be interpolations. In any

event, they close the sequence of longer interpolations in this first part.
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§6. Division of parts of proportional powers among themselves and de-
termination of the power of the quotient

(A. 104-110) If we wish to divide a part of a power by a part of a power and know
the kind®' of power of the quotient, we divide the power of the dividing part by the
power of the divided part [and we shall know of which kind is the quotient].’? If
the power of the divided part is that closer to the power of the root, what is sought
will be the quotient itself; if the power of the divided part is that farther from the
power of the root, what is sought will be a part of this quotient.

Example(s). (i) We wish to divide a part of a square by a part of a cube; the quotient
will be a thing.

(it) We wish (4V) to divide a part of a cube by a part of a square; the quotient will
be a part of a thing.

(A.111-115) [This is also analogous to the division of fractions by fractions. There
we multiply each of the two denominators by the parts of the other, using an inverted
multiplication, then we divide the resulting dividend by the resulting divisor. (But)
since here the (number of) parts, for each of the two terms (jinsan), is 1, we divide the

two powers, dividend by divisor (sic), without needing the inverted multiplication.]>3

That is how to proceed.

Second part

On proportional powers linked together generally. This is divided
into four paragraphs.’*

§1. Adding them

(A. 121-128) If there occur in a problem two expressions (janbatan) containing
like kinds (ajnas) and we are to add them, the coefficient (‘‘dda) of each kind in one
expression is added to the coefficient of its correspondent in the other expression.®®
If the two corresponding (coefficients) are positive (za’idan), so will the sum be.

If they are both negative (nagisan), that is, subtractive [from another kind], the

5! The manuscript has “part” (juz’), which is corrected below into jins, “kind.”
52 Thus xik : ﬁ reduced to considering ;”—,i = 2!"%. As said below, we shall have a power proper if

k <l and a part of this power if k > [.

53 ki
51

5 Successively: addition, subtraction, multiplication, division involving (except in the last case)

ki-lg
l1-ko

1
: % gives , thus here %, while ﬁ : L% gives f% = 271 Not very convincing analogy.
two expressions consisting each of a number and some multiple of a thing.
55 Expressions of the type a+mz, b+nz. The absolute values of the coefficients of z are considered.
The numerical terms a, b are there merely in order to avoid dealing with purely negative quantities.

56 See below, examples 4 (and vi).
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sum will be negative, that is, subtractive.?” If one is positive and the other negative
and the coefficient of the positive (kind) is less than the coefficient of the negative
(kind), the lesser coefficient is subtracted from the greater and the remainder will
be negative, and this will be the (coefficient of the) sum;®® if the coefficient of the
positive (kind) is greater, the lesser coefficient is subtracted from the greater, and

the remainder will be positive, and this will be the (coefficient of the) sum.?"

(A. 129-141) Example(s). (i) We wish to add 10 plus a thing to 10 plus a thing;
the sum will be 20 plus two things.5°

(7)) Or we add 10 minus a thing to 10 minus a thing; the sum will be 20 minus two
things.5!

(7i7) Or we add 10 minus a thing to 10 plus a thing; the sum will be 20 altogether.%?
(7v) Or we add 10 plus two things to 10 minus a thing; (5") the sum will be 20 plus
one thing.%3

(v) Or we add 10 minus two things to 10 plus a thing; the sum will be 20 minus one
thing.64

(vi) Or we add 15 plus a thing to a thing minus 10; the sum will be two things plus
5.65

(vii) Or we add 15 minus two things to a thing minus 10; the sum will be 5 minus
one thing.%6

57 See example 7.

See examples v and vii below. 4ii is a particular case.

See examples 7w and viii below.

60 Example i. (10 + x) + (10 + 2) = 20 + 2z, generally (a +mz) + (b +nz) = (a 4+ b) + (m + n)z,
with here a = b, m = n.

61 Example #. (10 — z) + (10 — ) = 20 — 2z, generally (a — mz) + (b — nz) = (a +b) — (m + n)z,
with here a = b, m = n.

52 Example . (10 —z) + (10 + =) = 20, generally (a — mz) + (b +nz) = (a+b) + (n —m)z, with
here a = b, m = n.

3 Example . (10 4+ 2x) 4+ (10 — z) = 20 + z, generally (a +mz) + (b —nz) = (a +b) + (m — n)z,
with here a = b, m > n.

64 Example v. (10 — 2z) + (10 + 2) = 20 — x, generally (a — ma) + (b +nz) = (a +b) — (m — n)z,
with here a = b, m > n.

5 Example vi. (15 + ) + (z — 10) = 2z + 5, generally (a + mz) + (nz —b) = (a — b) + (m + n)z,
with here a # b, m = n.

6 Example vii. (15 — 2x) + (z — 10) = 5 — z, generally (@ — mz) + (nz — b) = (a —b) — (m + n)z,
with here a # b, m > n.



60 Sesiano SCIAMVS 24

(viii) Or we add 10 minus a thing to two things minus 15; the sum will be a thing
minus 5.57

That is how to proceed.

§2. Subtracting them

(A. 144-154) As for subtracting, if there occur in a problem two expressions con-
taining like powers and the (terms) of one of them must be subtracted from those of
the other, we subtract the coefficient of each kind in the expression to be subtracted
from the coefficient of its correspondent in the expression from which is subtracted.%®
If the two corresponding (coefficients) are positive and the subtracted one is less,
the remainder will be positive;%? if it is greater, the remainder, thus their difference,
will be negative, that is, subtractive.”® If the two corresponding (coefficients) are
negative and the subtracted one is less, the remainder will be negative;”" if it is
greater, the remainder, thus the difference between them, will be positive since this
(negative) difference is subtracted [from the minuend].” If only one of the two cor-
responding (coefficients), say the subtracted one, is positive, whether less or more
than the one from which it is subtracted, and the one from which it is subtracted is
negative, the remainder, which is the sum of the two coefficients, will be negative,
that is, subtractive [from the aforesaid element; indeed, subtracted from subtracted
becomes added in the minuend];” if (the subtracted coefficient) is negative, whether
less or more than the one from which it is subtracted, and the one from which it is
subtracted is positive, the remainder, which is the sum of the two coefficients, will

be positive.™

(A. 155-165) Example(s). (i) We wish to subtract (5Y) 10 plus a thing from 15
plus five things; the remainder is 5 plus four things.”

57 Example visi. (10 — x) 4 (22 — 15) = z — 5, generally (a — mz) + (nz —b) = (a — b) + (n — m)z,
with here a # b, n > m.

68 As before, the absolute values of the coefficients are considered. We shall now examine succes-
sively (+) — (+); (=) = (=)5 (=) = ()3 (+) = ().

See example 7 below.

See example 1.

See example 7ii.

See example iv.

See example v.

™ See example vi.

7 Example i. (15 + 5z) — (10 + z) = 5 + 4z, generally (a + mz) — (b +nz) = (a — b) + (m — n)z,
with a > b, m > n.
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(i) Or we subtract 10 plus five things from 15 plus a thing; the remainder is 5 minus
four things.”

(77) Or we subtract 10 minus a thing from 20 minus ten things; the remainder is 10
minus nine things.””

(iv) Or we subtract 10 minus ten things from 20 minus three things; the remainder
is 10 plus seven things.™

(v) Or we subtract 10 plus a thing from 15 minus a thing; the remainder is 5 minus
two things.™

(vi) Or we subtract 10 minus a thing from 15 plus a thing; (the remainder) is 5 plus
two things.®°

That is how to proceed.

§3. Multiplying them

(A. 168-174) As for multiplying, if there are two quantities (migdaran) which we
wish to multiply by two other quantities, we shall place the multiplicand (madrub)
in one row and the multiplier (madrub fihi) in another, below, (with corresponding
terms) lined up; then we need in that case four multiplications, two diagonally and
two vertically. If there are three quantities (to be multiplied) by three quantities,
we need in this case nine multiplications, six diagonally and three vertically. And
so on by the same reasoning, whatever the (number of) quantities.®! Moreover, for
any two quantities we multiply together which happen to be both positive or both
negative, the product will be positive; otherwise it will be negative.

(A. 175-190) Example(s).8? (i) We wish to multiply 10 plus a thing by 10 plus
a thing. We place the 10 below the 10, and the thing below the thing; then we
multiply 10 by the thing (placed) diagonally to it, which gives ten things; then we

"6 Example #. (15 + ) — (10 4+ 52) = 5 — 4z, generally (a +mz) — (b4 nz) = (a — b) — (n — m)z,
with here a > b, m < n.

7T Example iii. (20 —10z) — (10 — z) = 10 — 9z, generally (a — mz) — (b—nz) = (a—b) — (m —n)z,
with a > b, m > n.

"8 Example iv. (20 —3x) — (10— 10x) = 10+ 7z, generally (a —mz) — (b—nz) = (a—b) + (n —m)z,
with here a > b, m < n.

™ Example v. (15 —x) — (10 + 2) = 5 — 22, generally (a — mz) — (b+nz) = (a — b) — (m + n)z,
with here a > b, m = n.

80 Example vi. (15 +2) — (10 — z) = 5 + 22, generally (a + mz) — (b —nz) = (a — b) + (m + n)z,
with here a > b, m = n.

81 As long as the two expressions contain the same number of terms, say m, there will be m vertical
multiplications and m? — m oblique ones.

82 Successively, (+) - (+); (=) - (=); (+) - (). Khwarizmi and Abi Kamil also have such multi-

plications of binomials, with geometrical illustrations in Abu Kamil’s treatise (see below).
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multiply the other 10 by the other thing, (placed) diagonally to it, which also gives
ten things; then we multiply the 10 by the 10 lined up, which gives 100; (6") then
we multiply the thing by the thing, also lined up, which gives a square. We add (all)
this, which gives 100 plus a square plus twenty things.53

(i) Next, (if we wish to multiply 10 minus a thing by 10 minus a thing,) we place
the two factors (madruban), (namely) 10 minus a thing by®* 10 minus a thing, in the
(same) place as before; then we multiply 10 by minus a thing® placed diagonally
to it, which gives ten things, negative, that is, subtractive; then we also multiply
the other 10 by minus a thing placed diagonally to it, which also gives ten things,
negative; then we multiply 10 by 10, which gives 100, positive, and we multiply
minus a thing by minus a thing, which gives a square, positive. We add that, which
gives 100 plus a square minus twenty things.56

(#i1) Again, (if we wish to multiply 10 plus a thing by 10 minus a thing), we place
the two factors, 10 plus a thing by 10 minus a thing, as in the previous position. We
multiply 10 by minus a thing, which gives ten things, negative; then we multiply
10 by a thing, which gives 10 things, positive; then we multiply 10 by 10, which
gives 100, positive; and we multiply a thing by minus a thing, which gives a square,
negative. We add that, which gives 100 minus a square, for the positive things cancel
out the negative things since they are in equal amounts.®”

(A. 191-200) Reason why the multiplication of negative by negative gives positive.®®
For that, we put line AB, and let it be 10 in number. We construct on it the
square ABGD. We subtract from line AB a thing, say BE, and from line AD (a

85 (10 4 z)(10 4 ) = 100 + z* 4 20z, generally (a 4+ mz)(b+ nz) = ab+ mnz? + (an + bm)z with,
here and in the two following examples, a = b, m = n. Same numerical example in Khwarizmi
(1831, 24 (trans.), 16-17 (Arabic)) and in Abu Kamil (1986, fol. 14" (Arabic); 1966, 61 (Hebrew);
1993, 1. 669 (Latin)).

84 Conveniently, fi here instead of (logically) “and” (wa) in order to avoid ambiguity (wa is also
used for +). Same in the next example.

85 Note the Arabic wording : fz illa shay’, with the illa shay’ considered as a set expression.

86 (10 — z)(10 — =) = 100 + z? — 20z, generally (a — mz)(b— nx) = ab+mnz® — (an +bm)z. Same
numerical example in Khwarizm1 (1831, 24 (trans.), 17 (Arabic)) and Abu Kamil (1986, fol. 15"
(Arabic); 1966, 61 (Hebrew); 1993, 1. 697 (Latin)).

87 (10 + 2)(10 — z) = 100 — 22, generally (a + mz)(b — nz) = ab — mnz® — (an — bm)z, thus here
with @ = b, m = n. Same numerical example in Khwarizmi (1831, 25 (trans.), 17 (Arabic)) and
Abtu Kamil (1986, fol. 15¥ (Arabic); 1966, 63 (Hebrew); 1993, 1. 724 (Latin)).

88 Rather, it proves the identity (u— v)2 = u? 4+ v? — 2u - v occurring in example ii. Here as in

other instances, the title is likely to be a reader’s addition; see note 6, above.
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2w+t —2u-w

Figure 5: Proof of the identity (u — v)
segment) equal to BE, say DZ. We draw line EHT perpendicular to AB and line
ZHK perpendicular to AD.8?

Then the rectangle DH results from the multiplication of DZ, thus a thing, by ZH,
thus 10 minus a thing, and (therefore) this (rectangle) is ten things minus a square.
(Now) the rectangle DH is equal to the rectangle HB. So the two rectangles DH, HB
are twenty things minus two squares. And the area GH is a square, for it results
from multiplying a thing by itself. Therefore the three areas DH, HG, HB are twenty
things minus a square, since the positive square has eliminated (6Y) one of the two
negative squares. (Now) the whole area ABGD arises from the multiplication of 10
by 10, which is 100. When we subtract from the 100 twenty things minus a square,
the remainder will be 100 plus a square minus twenty things, and that is equal to
the multiplication of AE, which is 10 minus a thing, by itself, that is, the area AH.

That is what we wanted to prove.“

§4. Dividing them

(A. 203—-207) As for dividing, what makes the outcome possible in this general
type (of operation) is the division of a polynomial expression (ajnas mugtirana),
with any number of terms, by a single term (jins). (Indeed,) if the divisor consists of

more than one term, there is no way to determine the quotient unless it is assumed

8 Demonstration also in Abt Kamil (1986, fol. 16" (Arabic); 1966, 63 (Hebrew); 1993, 1. 732
(Latin)). Here the letters follow the succession of the Greek alphabet (with s =€, » =1, L =1).
9 Tet AB = u (thus the square ABGD is u?) and take, on AB, the segment EB = v and, on AD,
the segment ZD = EB; from E and Z, draw EHT perpendicular to AB and ZHK perpendicular to
AD.

Then rectangle DH = ZH - ZD (= (u — v) v = uv — v?). Further, since DH = HB, DH + HB =
2uv—2v%. But HG = v?, so DH+HB+HG = 2uv—v?. Subtracting this from ABGD = u?, we are left
with the square AH, which is therefore AH = AG—(DH+HG+HB); that is, (u—v)? = v~ (2uv—v?).

The proofs involving two squares (here AG and AH) differing by a gnomon (thus the area

ZDGBEHZ here; see note 4, above) will now become recurrent.
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(mafrud) in the problem; (for) then one uses the multiplication as a device (for
verification), (since) indeed for any quantity which is divided by another quantity
the quotient when multiplied by the divisor gives again the dividend.”!

(A. 208-213) Example(s) of the aforesaid case of possibility.”? (i) If we wish to
divide 10 plus a thing by 5, we divide 10 by 5, which gives 2, then we divide a thing
by 5, which gives a fifth of a thing. We add that, which gives 2 plus a fifth of thing.

(i) If we wish to divide 10 plus five things by a thing, we divide 10 by a thing,
which gives ten parts of a thing, and we divide five things by a thing, which gives
5, (thus) a number. We add that, which gives as the (required) quotient 5 plus ten
parts of a thing. That is how to proceed.

Third part

On proportional powers when simple and associated.”? This will
comprise six paragraphs.

§1. Taking multiples of them

(A. 219-222) Taking multiples of square roots associated with numbers.% If we
wish to take the multiple of the square root of a number—the meaning of taking
the multiple (tad‘f) (of a square root) is that one takes it twice, or thrice, or
any arbitrary number of times—(7") we multiply the multiple—with its fraction, if
any—by itself, then by the number in question (al-‘adad al-mansub), and take the
square root of the product; the result will be what is required.

9 If this is the original text, with the multiplication used to verify an assumed quotient, it is quite
banal. But, as we shall see at the end of the next part (A.499-554), in some cases a multiplication
might serve to rationalize the denominator and thus make the division possible.

92 % =2+ %x and % = 179 + 5 successively.

93 The title is, to say the least, misleading, and can hardly be the author’s: we shall be taught how
to apply the six operations mentioned above (A.26-27) to numerical roots, both square and cube
ones, sometimes also fourth roots. Thus powers of an unknown do not intervene. We have already
met such an inappropriate title (note 88; see our introduction, note 6).

9 A “root associated with a number” (jidhr mansub ila ‘adad, or simply jidhr mansub) is a nu-
merical root; this must be specified in order to avoid confusion with “root” corresponding to our
x. Note too that by “root” (jidhr) applied to numbers our Arabic text means exclusively square
roots (as we shall specify each time by adding the word “square”). Here a cube root is ka‘b (dila‘
in Karaj’s Badi‘) and a fourth root, jidhr jidhr. Analogous computations for square roots occur
in Khwarizmi (1831, 27-29 (trans.), 19-20 (Arabic)) and Abu Kamil (1986, fol. 17" (Arabic); 1966,
67 (Hebrew); 1993, 1. 799 (Latin)).
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(A. 223-238) (i) We shall first take a rational example of that.” We wish to
double the square root of four.”® The meaning of this is that we take it twice, which
is no different from our statement “two square roots of four, of what quantity (mal)
is it the square root?” We multiply the number of the multiple, which here is 2, by
itself, which gives 4, then by the number in question, namely 4 also, which gives 16.
The square root of that, thus 4, is the double of the square root of 4.%7

(i) Likewise, if we wish to take three times the square root of four—which is once
again the same as our statement “three square roots of four, of what quantity is it
the square root?” We multiply the number of the multiple, thus 3, by itself, then
the result, thus 9, by 4; this gives 36. So the square root of 36, thus 6, is thrice the
square root of 4.%8

(737) Likewise if we wish to take twice and a half times the square root of eight. We
multiply the number of the multiple, thus 2 + %, by itself, which gives 6 + i, then
by 8, which gives 50. So the square root of this, thus the square root of 50, is equal

to the square root of 8 taken twice and a half times."

[Again, we wish (to take) two square roots of nine, that is, take the (square root
of nine) twice. We (are to) determine first of what quantity two square roots of nine
is the square root. This will follow the previous reasoning: we multiply 2 by itself,09
because of the “two” square roots, which gives 4, then (this) by 9, which gives 36.
Then the square root of 36 will equal two square roots of 9. So our statement is as

if we were to double the square root of 36 (sic), that is, take it twice.]!!

That is how to proceed.

(A. 239-249) Proof of this.!%2 We put, for the reason that we have given,'%® the

number of which we want to take a multiple of the square root, the [uniform]'%*

95 Arabic: mithal mantiq. The first two examples lead to a rational result, not the third one.

9 Arabic: da“afa = to take a multiple; here da“afa marratan wahidatan = to double.

7 9.4 =+/4-4=+16 = 4. Generally, k- Vu = Vk? - u.

®3VA=v9-4=36=6.

" (241) vB= /61 1) 8= Vi

100 Arabic: fi mithlihi: a number is mostly taken grammatically in the singular. But there are
exceptions; see e.g. A.228, 316, 318, 488, 492, 514, 665.

01 9.4/9 =+4-9 = /36 = 6. This same example is found in Khwarizmi (1831, 28 (trans.), 20
(Arabic)). But this one cannot be genuine, for, first, we would expect such a simple example to
have come before the two previous ones and, second, not only is it superfluous, it is also confused.
192 That is, generally, that k - v/u = vk2 - u. Proof also in Ab@ Kamil (1986, fol. 17° (Arabic);
1966, 69 (Hebrew); 1993, 1. 817 (Latin)).

103 Presumably: as in Fig. 5 above, with a square and its side.

104 Useless specification. But see note 262, below.
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A H
G B
Z D E

Figure 6: Proof that k- v/u = Vk2-u

square AB, and its square root, (7¥) line GB.'% Let the number of the multiple be
line BD, and let line BD be perpendicular to BG [at right angles]. We construct on
BD the square BE, and we complete the square AZEH.

Then ED is to DZ as the square BE is to the rectangle BZ, for their height
is the same;!% but ZG is equal to ED and AG to ZD, and ZG is to AG as the
rectangle BZ is to the square AB; therefore the square BE is to the rectangle BZ as
the rectangle BZ is to the square AB. So the rectangle BZ, which is required,'° is a
mean proportional between the two squares AB and BE—the rectangle BZ is called
one of the two complements of the two squares AB and BE, and the rectangle BH
is the other complement, and they are equal.'%® For this reason, we multiply the
number of the multiple, namely BD, by itself, then multiply the result, namely the
square BE, by the number of the square root,'%? namely AB, and take the square
root of that, which is the rectangle BZ. This is what is required, for it is the product
of the multiplication of the square root of AB, thus line BG, by the number of the

multiple, thus line BD. This is what we wanted to prove.''?

(A. 250-262) Multiples of numerical cube roots. There (above) it became evident
that multiplying by itself the product of any two numbers equals the product of

105 Here and in what follows the quantity under the radical sign, thus the radicand, will be rep-
resented by a square of which the side is thus the root considered (“reason”: see above, “of what
quantity is it the square root?”).

106 See Elements VI.1.

107 Tt represents the multiple of the root.

108 This last sentence interrupts the reasoning but is a pertinent assertion. This is Elements 1.43.

109 Thus the radicand of the square root. Arabic ‘adad majdhir.

10 To prove that k- y/u = Vk2 -u, let DB=k (so BE =k?) and GB = y/u (so AB = u).

Then BZ = BH = DB-GB (= k- ). Now DE : ZD (= DE-DB : ZD -DB) = BE : BZ;
likewise, since DE = ZG and ZD = AG, DE : ZD = ZG : AG = BZ : AB. Therefore BE : BZ =
BZ: AB, so BZ? = BE- AB, thus BZ = vVBE - AB. That is, k- v/u = Vk2 - u.
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the square of one of them by the square of the other.!!!

Likewise, if we wish
to take a multiple of the cube root of a number, we multiply the multiplicative
factor (“number of the multiple”: ‘adad al-amthal) by itself, then the result by the
multiplicative factor once again—so that the result becomes a cube—then the result
by the number in question, and take the cube root of the result. That will give what

is required.!1?

The principle (al-asl) behind this is (first) that any number equals the square
root of its square, the cube root of its cube, the fourth root (jidhr jidhr) of its
fourth power (mal mal);*'3 (second, that) for any two numbers the square root of
the product of the square of one of them by the square of the other equals the cube
root (8") of the product of the cube of one of them by the cube of the other, and this
also equals the fourth root of the product of the fourth power of one of them by the

fourth power of the other, then (so on) likewise!!4

—this for the previous reason that
the product of any two numbers, when multiplied by itself, equals the product of
the square of one of them by the square of the other.''® Now since what is required
in taking the multiple [of the cube root] of the cube root is multiplying [the cube
root of] the cube root (of the number in question) by the multiplicative factor, then,
when we raise this product to the cube, it will be as if the number in question has
been multiplied by the cube of the multiplicative factor (ad‘af), and that is why we

(then) take the cube root of the (result), which thus gives what is required.!!6

(A. 263-270) Multiples of numerical fourth roots, which are the sides of fourth pow-
ers.''7 By the same reasoning, if we wish to take a multiple of the fourth root of
a number, that is, take a multiple of the side of a fourth power, we multiply the
multiplicative factor by itself, then the result by itself—whereby it becomes a fourth
power—then the result by the number in question, and take the fourth root of the
result. This gives what is required.

The reason for that is as seen in the two previous examples, namely that what is
required is multiplying the side of the fourth power by the multiplicative factor; then
if we raise this product to the fourth power, this will become like our multiplying
the number in question by the fourth power of the multiplicative factor. That is

ML (- 0)? = u? - v?, evident from what precedes (see also below).

2 Y= YR

. 3 . 3/7.3
13 That is, first, u = Vu2 = Vud = ... = 4™, in our case k = Vk3; “fourth powers,”
lit. “square-squares.”
3
14 Then, second, u-v = Vu2 02 = Vud 03 = ... = Yum-v™. In our case: k- Ju =

3/k3 - (Yu)3, thus V&3 - u.
15 As asserted above (note 111).
16 Thus k- ¢u = Vk3 - u, as asserted above (see notes 112, 114).

117 «

side”: dila‘ (= mheuvpd).
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why we multiply in this way and take (then) the fourth root of the result, which
thus gives what is required.'!®

§2. Taking a fraction of them

(A. 273-276) Taking a fraction of numerical square roots. Taking a fraction just
follows the reasoning for taking a multiple. For, if we wish to take the fraction
(tajzi’a) of the square root of a number—the meaning being that we multiply the
square root of this number by a half, or a third, or a fourth, or any of the parts of
119 —we multiply this part by itself, then the result by the number in question, and

take the square root of the product. This gives what is required.!? (8Y)

(A. 277-282) Example(s). (7) If we wish to halve the square root of four—which is
like saying “half the square root of four, of what quantity is it the square root?”—we
multiply the part, namely a half, by itself, which gives a fourth, then by the number
in question, which is four; this gives 1. We take the square root of this, which is 1,
and this is what is required.

(it) Likewise if we wish to take a third of the square root of thirty-six—the meaning
being “a third of the square root of thirty-six, of what quantity is it the square
root?”—we shall multiply a third by a third, which gives a ninth, then by 36, which
gives 4. So the square root of this, which is 2, is a third of the square root of
thirty-six.

(A. 283—-284) Likewise again, taking a fraction of the side of a cube or of the side
of a fourth power follows the same reasoning.'?! The reason for that is the previous

one, as given in the paragraph on taking multiples.!??

§ 3. Adding them

(A. 287-289) Addition of numerical square roots. If we wish to add together the
square root of a number and the square root of a number, we add the two radicands
(al-‘adadan al-majdhuran) and add to the sum twice the square root of the result of
multiplying one of them by the other. Taking the square root of the result will give

what is required.'?3

VS g Yu= Yk (Yu)t = VR

119 0dd restriction to unit fractions. See note 174, below. Maybe because %a = p(% a), thus
reduced to the previous case.

120 1. /u=4/(£)?u. Here the two examples are 3 - v4 =1, 1.v/36 = 2. See also Khwarizmi
(1831, 28-29 (trans.), 20 (Arabic)).

121 Thus, taking a fraction of a cube root or a fourth root: & =3/ % JERETH =3/ %

122 Above, notes 113, 114.

123 Ju 4 o= utv+2vu- .
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(A. 290-299) Example(s), (first) for rational square roots (judhur muntaga).'** (i)
We wish to add the square root of four and the square root of nine. We multiply 4
by 9, which gives 36; we take the square root of that, which is 6; we double it, which
gives 12; we add it to the sum of 4 and 9, so the sum is 25. The square root of this,

namely 5, is the sum of the square root of four and the square root of nine.!?®

(#) Likewise if we wish to add the square root of three and the square root of five.
We multiply 3 by 5, then take the square root of the result, which is the square
root of 15. Then we double it, following the previous reasoning in the paragraph
on taking multiples of square roots;'?% this gives the square root of 60. We add it
to the sum of 3 and 5; the result (9") is 8 plus the square root of 60. We take the
square root of that; this will give what is required.?”

[The reason for that is the following. If, for any two square numbers, we add to
them their two complements, the result will be a square, and, if we subtract these

from them, the remainder will be a square.]!?
A H
B G Z
E D

Figure T7: Proof that v/u + v =+yu+v+2yu-v

(A. 300-306) To prove that,'?? we draw the two squares AG, GD, the side of the
square AG being BG, and the side of the square GD being GZ. We complete the
two rectangular complements BE and GH.

We have proved in the paragraph on multiples that each one is a mean pro-
portional between the squares AG and GD.'3? Therefore our multiplying the two

124 /4 and v/9 here, but v/3 and v/5 in the next example.

125 /149 =1/4+9+2V4 9=1/13+236 = v/25 = 5. Same example in Aba Kamil (1986,
fol. 20" (Arabic); 1966, 77 (Hebrew); 1993, 1. 975 (Latin)).

126 Above, A.219-249.

127 /34 5=+/3+5+2v35=1/3+5+2v15 = /8 + V60.

128

u? +v2 £ 2u-v = (u=£v)? (Elements I1.4). This assertion must be an early reader’s addition.
129 Proof that v/u ++/v = \/u + v+ 2/u-v. Also in Abii Kamil (1986, fol. 20* (Arabic); 1966, 77
(Hebrew); 1993, 1. 980 (Latin)).

130 Above, A. 239-249. Here: BE = GH = vAG - GD.
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squares AG, GD will give us the rectangle BE multiplied by itself. We take the
square root of that, which gives the rectangle BE. We double it, which gives the
sum of the two rectangles BE, GH. We add to that the two squares AG, GD. This
completes for us the square AD.'3! We take its square root; this gives AH, which is
the sum of the two sides BG and GZ. This is the proof we wanted.3?

(A. 307-309) The same reasoning applies if we wish to add the square root of a
number to some (plain) number: we multiply the plain number (al-‘adad al-mutlaq)
by itself, so it will become a square root (majdhir);'3? that is, it will become of the

same kind as the other. Then we proceed with the same treatment as before.!34

(A. 310-314) Addition of numerical cube roots. If we wish to add the cube root of
a number to the cube root of a number, we multiply the square of one of the(se)
numbers by the other number, then the result by 27, take the cube root of that
and keep it in mind. Then we multiply the square of the other number by the first
number, then the result by 27, take the cube root of it, and add it to what we
have kept in mind. Next we add the result to the sum of the two cubic numbers in

question, and we take the cube root of the result. This will give what is required.!®>

(A. 315-324) Example (9V) for rational cube roots (ki‘ab muntaqa).'3® We wish
to add the cube root of eight to the cube root of a hundred and twenty-five. We
multiply 8 by itself, then the result by 125, which gives 8000, then by 27, which gives
216 000; we take the cube root of that, namely 60, which we keep in mind. Then we
multiply 125 by itself, which gives 15625, then by 8, which gives 125000, then by
27, which gives 3375000; we take the cube root of that, namely 150. Then we add
it to what we have kept in mind, namely 60, which gives 210. (Then) we add that
to the sum of the two numbers, thus 8 and 125, which gives 343. The cube root of
that, namely 7, is the sum of the cube root of eight and the cube root of a hundred
and twenty-five.!3” That is how to proceed.

131 This might have been the intended place of the interpolation.

132 Let AG = v (so BG = y/v) and GD = u (so GZ = v/u). Since BE = GH = vVAG-GD (=
Vu-v),s0 AD = AG +GD+ 2+/AG - GD; taking the root of that gives us AH = BZ = \/u+ /v =
133 Thus the radicand of a square root, for v = Vv2.

B4t v =+ Vo =Vt v+ 2V o2,

135 ¥4 v = %/u—&—v—&— V27Tu2 - v+ V/27u - v2. Indeed (a+b)% = a® + b +3a%-b+3a-b?, with
here, e.g., 3a® - b = 3 (u)? - ¥v = V27u2 -v. Here u and v are called first the “numbers,” then
the “cubic numbers.”

136 Namely /8 = 2 and /125 = 5, thus giving rational results.

87 Consider thus /8 4+ V/125. Since v/27-82-125 = /216000 = 60 and v/27-8-1252 =
V3375000 = 150, so /8 + ¥/125 = /133 + 60 + 150 = V/343 = 7.
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A

E D

Figure 8: Proof that ¥/u + /v = i/u—i—v—i— V2Tu2 v+ V27u - 02

(A. 325-348) To prove that,'?® we imagine two different cubes with the square
bases AG and GD, and let the diagonal of base AG be in the prolongation of the
diagonal of base GD, and let the shorter one be AG. We imagine that the square
AD is the base of the cube enclosing the two cubes considered, that is, comprising
them. It is known (by considering the figure) that this larger cube exceeds the two
cubes considered by two equal parallelepipeds with their bases equal to the rectangle
BE and their height equal to line BH, and also by two further, (this time) different,
parallelepipeds having, respectively, as base the square AG and as height EG, and
the square GD and the height BG.139

Now the product of line BG by itself, then of the result by GE, when added to
the product of GE by itself, then of the result by BG,0 is equal to the product
of BG by GE, (10") then the result by the sum of BG and GH; that is, (the
result will be) the parallelepiped with base BE and height BH.'4! Then the sum
of the two parallelepipeds with base AG and height GE, respectively base GD and

138 Namely that &u 4 /v = i/quer V2Tu? v+ V27T u - v2.
139 Consider the cube BH? on the square base AD and the two smaller cubes BG® = v, on the
square base AG, and GH® = u, on the square base GD.

Considering the whole cube, we see that BH?> = BG® + GH?>+ four complementary paral-
lelepipeds, namely (4, upper left) BG?- GH; (i, upper right) BG-GH-BH = BG-GH (BG +GH) =
BG? - GH + BG - GH?; (i, lower left) BG - GE-BH = BG - GH - BH = BG? - GH + BG - GH?
(same as 44); (év, lower right) GH? - BG. We thus obtain, for these four parallelepipeds altogether,
i+ii+ii+iv=3-BG?.GH+3-BG - GH?, and this is the excess of the cube on AD over the two
cubes with bases AG and GD.

140 Thus the above complements ¢ and 7.

141 Since GH = GE, so BG? - GH + GH? - BG = BG - GH - (BG 4+ GH) = BG - GH - BH. This is
our 4 or 74, thus indeed a parallelepiped (one of the two lateral ones). The excesses 7 and v taken
together are therefore equal to 4 (or #4). The inference will be that the whole excess must equal

thrice one of the two lateral parallelepipeds.
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height BG,'¥? is a third of the excess of the larger cube with base AD over the sum
of the two cubes with bases AG and GD.'3 So if we multiply each of these two
parallelepipeds by 3, the result will equal the whole of this excess. (Now) we know
that the parallelepiped with base AG and height GE arises from multiplying BG
by itself and the result by GE; we (also) know that multiplying the square of BG
(first) by GE, then by 3, next raising the result to the cube, will equal (the result
of) multiplying the cube with side BG by itself and then the result by the cube
with side GE, (the result being) multiplied by 27.14* Because of this we multiply
the cube with base AG by itself, then by the cube with base GD, then multiply (all
that) by 27, and the cube root of that is taken; the (result) will equal (three times)
the parallelepiped with square base AG and height GE.'® Then we also multiply
the cube with base GD by itself, then by the cube with base AG, (then all that) by
27, and take the cube root of that; this will equal (three times) the parallelepiped
with square base GD and height BG.14% (But) we have shown that (three times)
these two parallelepipeds is the excess of the larger cube over the two smaller cubes
considered. Therefore we shall add (three times) these two cubes (sic) to the sum

47

of the two cubic numbers,'4” in order for us to complete the larger cube, and take

the cube root of that; the result (10V) will be equal to the required sum of the two

cube roots. This is what we wanted to prove.'4

12 Thus, and again, the above complements ¢ and 7v.

143 The excess thus consists of three equal parts: 7 + 7 (the two parallelepipeds on the two given
cubes), the lateral parallelepiped i, the (equal) lateral parallepiped éii.

144 3. AG-GE=3-BG?-GE, so (3-AG-GE)® = (3-BG?-GE)® = 27- (BG®*)? - GE®.

145 $/o7. (BG?’)2 -GE® = (3) BG? - GE. This is our complement 4 (but taken three times).

146 Tikewise, /27 - (GH?’)2 -BG® = (3) GH? - BG. This is our complement v (but taken three
times).

147 That is, the given numbers of which we wish to add the cube roots.

148 Since this whole reasoning is rather abstruse, let us repeat it. We have,
for the whole cube, BH® = GH?® + BG® + 3BG - GH? + 3BG? - GH, so that
BH = {/GH?®+BG®+3BG-GH?+3BG2-GH. Now since BG = ¥, GH =
Yu, thus BH = &u + &v, and GH* = wu, BG* = v, 3BG - GH?
3v - (Yu)® = V2Tu?-v, 3BG?. - GH = 3(¢)? - Ju = V27u-v2, this indeed means
that Ju + v = i/u + v+ V27u? v+ V27u-v2. This also proves the identity (a + b)* =
a®+3a®-b+3a-b2+ b3, to be used later on.
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§4. Subtracting them

(A. 351-353) Subtraction of numerical square roots. For that, if we wish to subtract
the square root of a number from the square root of a number, we add the two
radicands (al-‘adadan al-majdhuran), subtract from the result the double of the
square root of their product, and take the square root of the result. This will give

what is required.'*?

(A. 354-357) Example. We wish to subtract the square root of four from the
square root of nine. We multiply 4 by 9, which gives 36, and take the square root of
that, which is 6. Then we double it, which gives 12. We subtract it from the sum
of 4 and 9, thus 13, which leaves 1, and take the square root of it, which is 1. Such
is the remainder of the subtraction of the square root of four from the square root

of nine.!??
A H
B G T 7
K
E L D

Figure 9: Proof that v/u — v =+\/u+v—2u-v

(A. 358-363) To prove this,!®! we imagine the square AG smaller than the square
GD, and, from the latter’s side GZ, we subtract (a segment) equal to the side BG
(of AG); let it be GT. We draw line TKL parallel to GE (and line TZ parallel to
LD).

Now since the rectangle BE is equal to the rectangle ET,'52 the remaining rect-
angle KZ will be equal to the rectangle ET minus the square GK. But the square
GK is equal to the square AG. So the two rectangles ET and KZ plus the square
AG are equal to the two complements BE and GH. Therefore we shall subtract that
from the (sum of the) two squares AG and GD, this leaving the square KD. We take

M9 Ju— o=/ u+v—2Vu-v.
150 /9 —v4=1/94+4—-2v4-9 =1. Same example in Abt Kamil (1986, fol. 20¥ (Arabic); 1966,
79 (Hebrew); 1993, 1. 993 (Latin)).
151 Namely that v/u — v = \/u +v — 2/u-v. Also in Abti Kamil (1986, fol. 20¥ (Arabic); 1966,
81 (Hebrew); 1993, 1. 998 (Latin)).
152" And also to the rectangle GH.
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its square root, which is LD, that is, TZ. Then the result (thus TZ) is the excess of

GZ over BG. This is what we wanted to prove.'®

(A. 364-369) Subtraction of numerical cube roots. If we wish to subtract the cube
root of a number from the cube root of a number, we multiply the square of the
lesser number by the greater number, then the result by 27, take the cube root of it,
add it to the greater number and keep the result in mind. Then we multiply (11%)
the square of the greater number by the lesser number, then (the result) by 27, take
the cube root of that, then add this to the lesser number. We subtract the result
from what we have kept in mind, and take the cube root of the remainder. The

result will be what is required.®*

(A. 370-379) Example. If we wish to subtract the cube root of eight from the
cube root of a hundred and twenty-five, we multiply the square of 8, thus 64, by
125, which gives 8000, then by 27, which gives 216000; we take the cube root of that,
which is 60, then add it to 125 and keep the result, thus 185, in mind. Then we
multiply the square of 125, thus 15625, by 8, which gives 125000, then by 27, which
gives 3375000; we take the cube root of that, which is 150, then add it to 8, which
gives 158. We subtract that from what we have kept in mind, namely 185, which
leaves 27. The cube root of that, namely 3, is the remainder of the subtraction of
the cube root of eight from the cube root of a hundred and twenty-five.'® That is
how to proceed.

(A. 380-394) Proof of that.!8 The reason for that is (partly based on) the proof
already given, in the paragraph on addition, namely that, if we multiply the cube
with base AG by itself, then the result by the cube with base GZ, this being mul-

158 Tet the two squares GD = u, with side GZ = v/u, and AG = v, with side BG = \/v (v < u).
Take, on GZ, GT = BG, then draw TKL parallel to GE and TZ parallel to LD (extended in our
drawing). Required GZ — GT = TZ = LD = /u — /v, which is the side of the square KD.

Now KD = GD + AG — (ET 4+ GK + KZ) (with the square GK = AG thus occurring twice in the
subtracted part), and ET4+GK+KZ = BE4+GH, so KD = GD+AG—(BE+GH). Taking the root of
this last equality, we find, since VKD = LD, \/u — /v = \/u+v —2Vu o= \/u+v —2u-v.
B Y — Yo=Y (ut V2Tu0?) — (v+ V2T v).

155 125 — /8 = i/(125 + V/27-125-82) — (8 4+ v/27 - 1252 - 8), which therefore will take the
form /(125 + ¥/216000) — (8 + v/3375000) = {/(125 + 60) — (8 + 150) = ¢/185 — 158 = /27,
and thus /125 — V/8 = 3.

156 Thus, that &/u— &v = i/(u—i— V2Tu-v?) — (v+ V27u? - v). Let /u=GH = GE, v =BG
(thus we have, for the two squares, GZ = (¢/u)?, AG = (%)2), required GH — BG.

Take, on BH, GD = BG. By the known expansion of (u — v)*, we know that (GH — BG)? =
GH? - 3GH? -BG + 3GH - BG? — BG® = (GH? + 3GH - BG?) — (BG® +3GH? - BG). These two

expressions will be considered successively.
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A

E Z

Figure 10: Proof of the subtractive case: Ju — Jv =
{/(u—i— V2Tu-v2) — (v 4 V27u? - v)

tiplied by 27, and take the cube root of the result, this will equal the product of
base AG by the side GH, then the result by 3.17 Then we separate from side GH
(a segment) equal to the side BG, say GD.

According to what precedes, if we add the square of BG, or the equal square of
GD, multiplied (11¥) by GH, then the result by 3!58—which is the cube arising
from side GD, taken three times, with the product of the square of GD by DH taken
three times—to the cube arising from side GH '%9—that is, the two cubes with sides
GD, DH, plus the product of the square of GD by DH taken three times, plus the
product of the square of DH by GD taken three times—this is altogether equal to
the cube of GD, taken four times, plus the cube of DH, once, plus the product of
the square of GD by DH, taken six times, plus the product of the square of DH by
GD, taken three times.'69

This will be subtracted from: the multiplication of the square of GH by GD, then
by 3161 —and this is equal to the multiplication of each of the two squares of GD
and DH by GD, taken three times, and the multiplication of the area GD by DH,
then by GD taken twice, then by 3, (this last term) being equal to the multiplication
of the square of GD by DH, taken six times—this (sum) being added to the cube

1573 (BGS)2 -GH® .27 = (m = ) BG? . GH - 3—this is simply V43 -v? wd = u-v - w;
see note 114, above.

158 Thus 3GH - BG2, now to be transformed.

159 Thus GH?, now to be transformed.

160 Consider first the above additive expression GH® 4+ 3 GH - BG? (which is u 4+ v/27u - v2). On
the one hand, 3GH - BG? = 3(GD + DH) - GD? = 3GD?® + 3GD? - DH; on the other, CH* =
GD?® + DH? 4+ 3GD? . DH + 3GD - DH2. Thus altogether, for the additive expression: 4 GD?® +
DH® + 6 GD? - DH + 3GD - DH?.

161 3GH? - BG = 3GH? - GD, now to be transformed and then added to GD? = BG®.



76 Sesiano SCIAMVS 24

arising from GD.!%2 (After the subtraction,) there will remain the cube of DH.!63
That is why we take the cube root of it, which gives DH, which is the remainder of
the subtraction of the cube root of BG from the cube root of GH. This is what we
wanted to prove.

§5. Multiplying them

(A. 397-399) Multiplication of numerical square roots. If we wish to multiply
the square root of a number by the square root of a number, we multiply the two

radicands and take the square root of the result; this will give what is required.'%4

(A. 400-402) Example for rational square roots.'%®> If we wish to multiply the
square root of four by the square root of nine, we multiply 4 by 9, which gives 36,
take the square root of that, which is 6. This is the product of the square root of

four by the square root of nine.!66

(A. 403-408) For the proof of that,'®” we replace the two radicands by the two
squares DB and BE. We wish to multiply their square roots. Let the side of the
square DB be AB (12") and the side of the square BE be BG. We complete the
square DE.

Then the rectangle AG is that enclosed by the two square roots, and it is, as we

168 3 mean proportional between the two

have shown in the paragraph on multiples,
squares DB and BE. Therefore we multiply together these two quantities (malan),
that is, the square DB and the square BE, and take the square root of the result.

This will give what is required [it is the result, which is the rectangle AG].'69

(A. 409-414) Following the reasoning we have (just) explained, when we wish to
multiply two square roots of 9 by three square roots of 4, we shall determine first

162 Consider now the above subtractive expression BG® + 3 GH? - BG (which is v + V27u2 - v).
With BG = GD, this expression becomes GD? + 3 GH? - GD. Since GH = GD + DH, its second
term becomes 3 (GD? + DH? 4+-2GD - DH)-GD = 3GD?* 43 CGD -DH? +6 GD? - DH. So, altogether,
this second expression takes the form 4 GD® +3GD - DH? 4+ 6 GD? - DH.

163 Subtracting now the second expression from the first gives (4 GD® + DH® 4+ 6GD? -DH+3GD -
DH?) — (4GD?® +3GD - DH? + 6GD? - DH) = DH®. Since this is indeed the cube with side
DH = GH — GD = {/u — /v, we have proved the identity.

164 o = .

165 Arabic: each of v/4 and /9 is a jidhr maftah (syn. jidhr muntagq, see A.290).

166 /4.1/9 = /36 = 6. Same example in Khwarizmi (1831, 30 (trans.), 21 (Arabic)) and Abii
Kamil (1986, fol. 18" (Arabic); 1966, 71 (Hebrew); 1993, 1. 858 (Latin)).

167 That /u - /v = /u - v. Proof with separate segments of a straight line in Aba Kamil.

168 Above, A.239-249.

169 Tet AB = /u, BG = /v, and consider the rectangle AG. Since AG = AB-BG (= vu - v)
and AG2 = AB?.BG? = DB - BE, so AG = AB-BG = VDB - BE, that is, vu-vv = u - v.
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Figure 11: Proof that v/u - v =+u-v

of what quantity two square roots of 9 is the square root by the previous reasoning;

6,170 which we keep in mind. Then we also determine of

it is [the square root of] 3
what quantity three square roots of 4 is the square root; it is also [the square root
of] 36. Thus it is like (saying): we wish to multiply the square root of 36 by the
square root of 36. So we multiply 36 by 36 and take the square root of the result; it

is 36, and this is the product of two square roots of 9 by three square roots of 4.17!

(A. 415-426) Multiplying fractions of numerical square roots. If we wish to multiply
a fraction of the square root of a number by a fraction of the square root of a number,
we multiply each of the two fractions by itself, then by the corresponding number,
then multiply the two results and take the square root of that. The result will be

what is required.!™?

Example. We wish to multiply two thirds of the square root of 9 by three fifths of
the square root of 25. We first determine of what quantity two thirds of the square
root of 9 is the square root according to the previous reasoning in the paragraph

on taking fractions;'”

it is [the square root of] 4. Then we also determine of what
quantity (12V) three fifths of the square root of 25 is the square root; it is [the
square root of] 9. So our proposition is as if we were to multiply the square root of

4 by the square root of 9.1 That is how to proceed.

170 Same supplement in what follows (A.412, 421, 422, 436, 441). Unlikely to be by the author.
7 (24/9) - (3v4) = /36 - /36 = 36. Same example in Khwarizmi (1831, 30-31 (trans.), 21
(Arabic)).

B a2 o= (B = e (B

173 Reference perhaps added by a reader; we just met this procedure before. See also subsequent

additions.

174 %\/@ % V25 = \/% -9- \/% .25 = v/4-/9 = 6 (note 166, above). Thus here no unit fractions

(see note 119).
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The reason for that is the following: what is required is the rectangle enclosed by

the two square roots,

which is the mean proportional between their two squares.
Therefore we shall determine the square of each one, multiply together these two

quantities and take the square root of the product; the result will be what is required.

(A. 427—-429) By the same reasoning, if we wish to multiply the square root of a
number by a fraction of the square root of a number, we shall determine of what
quantity that fraction is the square root, then multiply the resulting quantity'’® by
the number of the square root and take the square root of that. This will be what

177

is required.” " [This for the reason already given.]

(A. 430-432) Multiplication of numerical cube roots. If, for all what we have ex-
plained involving square roots in this paragraph, there are cube roots instead, we
shall raise to the cube here what we have squared before, and take the cube root
here instead of taking the square root as before, without any (other) modification.

(A. 433-443) Multiplication of numerical square roots by numerical cube roots. Like-
wise if we wish to multiply the square root of a number by the cube root of a num-
ber.!™ As if we were to multiply the square root of four by the cube root of eight.
We make the square root of 4 a cube, namely by multiplying it by itself, which gives
4, then by the square root of 4, which gives four square roots of 4; next we determine
to what [square root of a] quantity correspond four square roots of 4, according to
the previous reasoning;'™ this is the square root of 64. That is the cube arising from
the square root of 4, and its cube root is the cube root of the square root of 64. Our
question (stated above) is then as if we were to multiply the cube root of 8 by the
cube root of the square root of 64. In accordance with the previous reasoning, we
multiply one of the two cubes, here 8, by the cube of the other, thus (by) the square
root of 64; this gives (13") eight square roots of 64. We again need to determine
of what quantity eight square roots of 64 is the square root; this is [the square root
of] 4096; we take the cube root of the square root of it.'8 This gives 4, and such is
the product of the cube root of eight by the square root of four.'¥!  That is how to
proceed.

175 Manuscript: juz’an instead of jidhran, a copyist’s confusion. The square roots are supposed to
include the multiplicative fractions.

176 Here appropriate (see note 170).

. 2 2
17 Since £ v = /5 v, s0 Vu-Evo=/u-Lro.

q q
18 - Yo = AV Yo = N - 02 = /s 02,
179 Above, A.219-222.
180 Thus the sixth root of 4096.

181 Thus (shorter): v4- /8 = V3. /-2 = /64 /64 = Y/ /64 /64 = 64 = 4.
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(A. 444-448) Multiplication of numerical fourth roots, which are the sides of fourth
powers. 32 If we wish to multiply the fourth root of a number by the fourth root of a
number, we shall multiply together the two numbers, for they are of the same kind
(mutajanisan), and take the fourth root of the product. The result will be what is
required.®3

The reason for that has been given, namely that for any two numbers the square
root of the product of their squares equals the fourth root of the product of their

fourth powers.'®4

(A. 449-451) We shall proceed likewise if we wish to multiply the fourth root of
a number by the square root of a number. We shall multiply the radicand of the
square root (al-‘adad al-majdhur) once by itself, so that it becomes of the same kind
as the other, then multiply together the two quantities and take the (fourth) root

of the product. The result will be what is required.'®

§6. Dividing them

(A. 454-460) Division of numerical square roots. If we wish to divide the square
root of a number by the square root of a number, we divide the quantity of the
dividend (mal al-magsum) by the quantity of the divisor. Taking the square root of

the quotient will give the answer.86

Example of that for rational roots.'®” If we wish to divide the square root of 36
by the square root of 4, we divide 36 by 4; the result is 9. So the square root of 9,

thus 3, is the quotient of the square root of 36 divided by the square root of 4.8

The reason for that we have given elsewhere, (namely) that the division is the
inverse of the multiplication.'® (13V)

(A. 461-464) Division of fractions of numerical square roots. If we wish to divide
a fraction of the square root of a number by a fraction of the square root of a
number, we multiply the (first) fraction by itself, then the result by its associated
number, and we do the same with the other fraction; then we divide the result for

182 Literally: “sides of square-squares” (see note 113).

183 3 o = Yu-v.
184 2 02 = Vut vt = u-v (above, A. 250-262, note 114).
185 Y- o= Yu- Vo = Vu -2,
186 % = /%. See Khwarizm1 (1831, 29-30 (trans.), 20-21 (Arabic)); Abu Kamil (1986, fol. 19¥
(Arabic); 1966, 75 (Hebrew); 1993, 1. 931 (Latin)).
187 Arabic: al-judhtr al-maftiha, see note 165.
188 36 _ /36 _ —
TE=VE=Vo=3
189 A.69, applied here to the previous § 5 (dividing now instead of multiplying as before).
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the dividend by the result for the divisor, and take the square root of the quotient.

The result will be the answer.190

(A. 465-468) We shall proceed likewise if we wish to divide the square root of a
number by a fraction of the square root of a number: we shall determine the quantity
corresponding to that (latter) square root, namely by multiplying the fraction by
itself and the result by its associated number, then we shall divide the radicand of
the dividend (‘adad al-magsum) by the (radicand of the) newly-formed divisor and

take the square root of the quotient. The result will be the answer.'9!

(A. 469-471) Division of numerical cube roots. If there are, instead of the square
roots mentioned in this paragraph, cube roots, the procedure remains the same,
except that we shall raise to the cube here instead of raising to the square there,
and take the cube root here instead of taking the square root there, without any
(other) difference.!%?

(A. 472—478) Division of numerical cube roots and square roots. We wish to divide
the cube root of a number by the square root of a number.'? As if we were to
divide the cube root of eight by the square root of four. We make the square root
of 4 a cube, and we proceed just as we did in the paragraph on multiplication;!?4
so the treatment will end up with our having to divide the cube root of 8 by (the
cube root of ) the square root of 64. So we need here to multiply 8 by itself in order
to make it of the same kind as the other, then divide the result, namely 64, by the
divisor, which is also 64; this gives 1. We take (the cube root of) its square root,

which is also 1, and that will be the answer.!?®

(A. 479-492) Likewise if we wish to divide the square root of a number by the
cube root (14%) of a number.'% As if we were to divide the square root of sixty-
four by the cube root of eight. We reduce the square root of 64 to the kind of the
cube, namely by multiplying the square root of 64 by itself, which gives 64, then by
the square root of 64, which gives 64 times the square root of 64. Then we shall
determine of what quantity 64 times the square root of 64 is the square root;'7 the

190 %\/ﬂ _ \/(%)Q-u - \/6131)2‘“ (: (p1q2 )2 U )

Bs = e\ & ave)
191 Vu oo w
i - D
A
192 ;/% = {/* (and note 112, if there are multiplicative factors).
193 Yu _ _ Yu g w3/ VW 03 u?
Vo 3me T VYV TV VR T v3
194 Above, A.433-443 (note 178).
05 B _ W _ ¥ _ afveE _ sfvea _ af /o
Va4 (Va3 NG V64 V64 64
196 vu _ VW3 3/Vad _ s/vaE _ 3] [u3
o T v T TV Ve T v?

197 Calculating thus 64 - /64 = /643 = /262 144.
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corresponding method is the previous one, namely that we multiply the number of
the multiple, thus 64, by itself, then by the number in question, which is also 64;
this gives 262144; the square root of the cube root of this is the square root of 64
reduced to the kind of the cube.!?® So it is as if we were to divide the square root of
the cube root of 262 144 by the cube root of 8. According to the previous procedure,
we make the cube root of 8 a square root, whereby it will be of the same form as
the dividend; that is, we multiply 8 by itself, which gives 64. Then we divide 262
144 by 64, which gives the quotient 4096. Such is the result of dividing the square
root of sixty-four by the cube root of eight.'® Since the cube root of 4096 is 16 and

the square root of that, 4, this is the answer.?0

(A. 493-495) Division of numerical fourth roots, which are the sides of fourth powers.
If we wish to divide the fourth root of a number by the fourth root of a number, we
divide the number of the dividend by the number of the divisor and take the fourth
root of the quotient. The result will be the answer.2! (14Y)

(A. 496-498) We shall proceed likewise if we wish to divide the fourth root of a
number by the square root of a number: we multiply the radicand of the square root
once by itself, so that it will have the same form as the other, then we divide the
dividend by the newly-formed divisor and take the fourth root of the quotient. The

result will be the answer.202

(A. 499-511) Division of numerical general powers (tabagat mutlaga mansuba),
whether one or several.2% |n such a type of division, that which can be treated
successfully is the division of a set of terms (ajnas mugtarana), however many, by
a single term (jins wahid), whatever it is, general (mutlag) or numerical (mansub).
(But) if the divisor (contains) more than one term, the division is hardly possible,
except by (resorting to) devices which the (usual) approach does not require; this is
the case when the divisor does not (contain) more than two terms, one of which is
known and the other a numerical (square root).?%* If the divisor (consists of) two
terms one of which is general—that is, a thing, a cube or something like that—or if

198/ ¥/262 144, instead of v/1/262144. See notes 193, 196.

199 Thig sentence should be either deleted or placed after the next one.

3 E 3 3 3
54 (V64)3 64:/64 _ 262144 _ 262144 _ _ 3 _ _
200 &I _ Y Y _ ¥ Lol v 2 = \/3 = 3/ 26267144 = ¥/V4096 = /64 = 4.

V38 V38 V8 V38
Or, as in the text,q/;w:\/ /4096 = /16 = 4.
201 Vu _ a/m

Vv T Vo
202 Yu _ Vu _ 4/m

Vo T W T VT

203 Rather: Division of expressions involving numerical roots, each with one or several terms. (Such
divisions are considered feasible if there is no compound expression left in the denominator.)
204 Gee last two examples below, where the divisor is the sum of an integer and a square root. But

the same treatment could be applied if there were two square roots.
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there are more than two terms, of whatever kind, then there is no way to determine

the quotient.?%°

[Example of that when the divisor is monomial (mufrad). We wish to divide ten
plus the square root of fifteen by a thing. We divide 10 by a thing, so the quotient
is ten parts of a thing. Then we divide the square root of 15 by a thing, that is, we
multiply the thing by itself, whence a square, then by 15, which gives fifteen squares,
and we take the square root of that, which is the square root of fifteen squares. We
add (all) this, which gives ten parts of a thing plus the square root of fifteen squares.

That is how to proceed.]?%6

(A. 512-517) Example of that when the divisor is a single numerical (term). We wish
to divide ten plus the square root of twenty by the square root of four. We divide
10 by the square root of 4, that is, we multiply 10 by itself, which gives 100, then
we divide 100 (15") by 4, which gives 25, and take the square root of that, which
is b; we keep it in mind. Then we divide the square root of 20 by the square root
of 4 in the manner seen before; the quotient will be the square root of 5. Adding it
to what we have kept in mind gives 5 plus the square root of 5.2°7 That is how to
proceed.

(A. 518-543) Example with the dividend simple and the divisor compound (magrun).
If we wish to divide fifty by ten plus the square root of ten, we use for that a
multiplication as a device: we subtract the square root of 10 from 10, which leaves
10 minus the square root of 10, and then multiply 10 minus the square root of 10
by 10 plus the square root of 10; this gives 90.298

205 This needs to be clarified. Thus, first, a very complete treatment of numerical square and fourth
roots is found in Chapter A-IX of Johannes Hispalensis’ Liber Mahameleth, written ca. 1150, where
Problems A.320-322, in particular, rationalize trinomial divisors, consisting of either one number
and two square roots or three square roots (Sesiano 2014, 1334-1336). Second, and more generally,
the divisor may well contain more terms and roots with higher indices, but then the treatment for
rationalizing it becomes more complicated than in the simpler case of two terms with square roots.
206 Erroneous and out of place, thus most probably interpolated. Erroneous, for in fact 10+T\/ﬁ =
11—0 + @ = 193—0 + \/;jg; out of place, because of the presence of a “thing” (doubtless inspired by the
“thing” mentioned above)—indeed, Part III deals only with numerical roots. Note that division by
a “thing” occurred in A.208-213.

207 10+v20 _ 14& + \/24j =54 /5. The reference is to A.454-460 (note 186).

V4
208 We are to calculate and for that shall multiply dividend and divisor by 10—+/10 in order

50
10+v10°
to rationalize the denominator. But the modern reader will omit the next paragraph, which is yet

another justification using the theory of proportions. Thus, here, since (104 +/10)(10 —+/10) = 90,

and so mfiom = 10 — v/10, while we wish to calculate mfiom =1t,8050:¢t=90: (10 — +/10),
whence t = %Bm.
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Since 10 plus the square root of 10 has been multiplied by 10 minus the square
root of 10 with the result 90, if we divide 90 by 10 plus the square root of 10 the
quotient will be 10 minus the square root of 10; indeed, for any two numbers when
the first is multiplied by the other and the result is divided by one of them, this will
give the other.??? But if we divide 50, which is the dividend, by 10 plus the square
root of 10, our result will be a number such that the ratio of 50 to this number
equals the ratio of 90 to 10 minus the square root of 10; for both 90 and 50 are
divided by the same number, namely 10 plus the square root of 10. So the ratio
of the first dividend to its quotient will equal the ratio of the other dividend to its
quotient. These four numbers are then proportional, three of them being known and
one unknown.

So we (now) multiply 50 by 10 minus the square root of 10; the multiplication
gives 500 minus fifty square roots of 10, and we divide that by 90. The quotient
of 500 divided by 90 is 5 plus g, that of fifty square roots of 10, negative, thus the
square root of 25000, negative, by 90 (15Y) is the square root of 3 + 8—71, negative.
Adding that gives 5+ 8 minus the square root of 3+ 811.210 That is how to proceed.

211 We have subtracted the square root

The reason for that is (the following).
of 10 from 10, then multiplied the remainder by 10 plus the square root of 10 in
order to obtain a rational number (‘adad muntaq); indeed, any binomial (‘adad dhu
al-ismayn) when multiplied by its apotome (munfasil) gives a rational result.?!2 A
general binomial (dhu al-ismayn mutlaq) is any number composed of (either) two
numbers rational in power or one rational in length (muntaq fi’l-tul) and the other
rational in power (muntaq fi’l-quwa); such are the square root of 10 plus the square
root of 3, or 10 plus the square root of 10 and the like.?'3 The apotome is a binomial
with its smaller part subtracted from the larger one; then the remainder is said to

be an apotome in general.?!4

209 p. % = yu. Mentioned in Khwarizmi (1831, 50 (trans.), 36 (Arabic)) and Abt Kamil (1986,
fol. 19" (Arabic); 1966, 75 (Hebrew); 1993, 1. 915 (Latin)).

210 50 _ 50 (10—+v/10) _ 500-50v10 _ 500—v/25000 _ 5_ i
10+v10 ~ (10+v10) (10—v10) 90 - 90 =5+3 3+ &

211 Explains why the denominator has thus been rationalized, with reference to the Elements.

212 «Binomial” here in Euclid’s sense. See Elements, X.36, X.73, X.114. Whence it could be inferred
that the above multiplication procedure will also work if the denominator contains two square roots
(see note 205).

213 Here the binomial is called “general” (mutlaq) because there are six kinds of it. See Elements,
X, def. IT (following prop. 47). As for the expressions “rational in length” and “rational in power,”
they are clear from the context: the first is rational, the second becomes rational when squared.
214 Again “general” because there are six kinds of apotome. See Elements, X, def. III (following
prop. 84). Root extraction of binomials and apotomes is taught in the Liber Mahameleth (A-IX,
Sesiano 2014); see also Elements X.54-59, X.91-96. Algebraic extraction of roots of binomials and
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(A. 544-554) Example when both the dividend and the divisor are compound.?!> We
wish to divide fifty plus the square root of two hundred by ten plus the square root
of ten. We first divide 50 by 10 plus the square root of 10 just as we did in the
previous example; this gives us the same result, thus 5 + % minus the square root
of 3+ %. Then we divide the square root of 200 by 10 plus the square root of 10,
just as in the previous treatment; that is, we multiply the square root of 200 by 10
minus the square root of 10, which gives ten square roots of 200, thus the square
root of 20 000, minus the square root of 2000, and we divide that by 90; this gives
the square root of 2+ 3 81, minus the square root of 20 . Adding (all) that gives 5+ 8
minus the square root of 3 + 81, plus the square root of 2 + 81, (16") minus the
square root of %.216 That is how to proceed.

Fourth part

On simple and compound equations involving proportional pow-
ers. This will comprise two paragraphs.

§1. Simple equation

(A. 560-567) A simple equation (mu‘adala mufrada) is that in which one of the
proportional kinds (anwa*‘ mutanasiba) mentioned (previously) is equated to another
one, that is, is equal to it. There are three such simple equations, namely those
occurring between (two of) the first three proportional kinds, thus number, root and
square. They are the basis (usul) for the other simple equations, since the latter
will reduce to them and (their degrees) lowered (munhatta) to theirs in such a way
that (each term) becomes of a certain (lower) kind if none of the two equated (terms
already) has the power of a number.2!” In some of the treatments we shall see,
for all these (equations), the coefficient (‘idda) of the higher (in degree) of the two
equated terms (al-nau‘an al-mu‘adilan) may be more or less than the unit: then we

apotomes is also found in KarajU’s Badi (al-Karaji 1964). Note that we have already met with a
piece of theory occurring within the text: see note 108.

215 Both are binomials, consisting thus (here) of a number and a square root.

216 5041200 __ /20 50 5 _V/200_ _
101 V10 = 10+f + 10+f Then, since, as seen, o1 vio = 5+ 3 /34 <L 51 While 10+f =

/200 (10—+/10) _10\/720—\/W /30000—+/2000 __ 3T /3 . 5047500
(10+W)(10 V10) 90 = \/2—1—78 v/ 51, so, altogether, oA =

VBt + VI E-VE.

a7 We are thus to divide the two terms by the lower power, so that we shall be left with one power

equal to a number. This is exactly the instruction given by Diophantus for simple equations in
the part of the Arithmetica extant in Arabic, which involves higher powers (Sesiano 1982, 88, 179;
Tannery 1893, 60.20 (Greek)). Since at that time x = 0 as a solution was not considered, such a
reduction was obvious. (The first “simple equation” az? = bz nevertheless remained still used as
such.) Here it is implicit that the two powers of the given equation of higher degree must not differ

by more than two degrees. See also A.637—642 for such reductions.
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need to change this (coefficient) to the integer 1, (namely) by making up for what
lacks or removing what is in excess, the same treatment being (then) applied to the
kind lesser (in degree) of the equation [whereby they will conform to (the terms of)

the elementary ratio].?!8

(A. 568-578) The treatment for reducing these (higher) equated kinds to a single
one if there is no fraction(s) is simple, involving little work and trouble. If there are
fractions [or there are fractions with both of them], we need then to apply (one of)
two treatments, one to add to a given number a given fraction of itself and the other

to remove from it a given fraction of itself.?!?

The case of addition is when we wish to add to a given number a given fraction
of itself. We then put the denominator of this fraction in two places, add to one
of them the fraction of itself, multiply the result by the (given) number (16") and
divide the result (by) the denominator in the second place; the quotient will be the
number increased by its fraction.

The case of subtraction is when we wish to subtract from a given number a given
fraction of itself. We shall just do as we did for the addition, only subtracting from
one of the two places its fraction instead of adding it there; the resulting quotient
will be what is required.

(A. 579-588) Example for the addition. We wish to add to 1+ 2 its fifth.?20 We put
the denominator of a fifth, thus 5, in two places. We add to one of the two places its
fifth, thus 1, which gives 6. Then we multiply 6 by the (given) number, thus 1 + %,
which gives 10. We then divide 10 by the denominator in the other place, thus 5;
the quotient is 2, and this is 1 + % increased by its fifth. That is how to proceed.

The reason for that is (the following): when we have placed 5 in two places and
added to one of them its fraction, namely a fifth, whence 6, the ratio of 5 to 6 will
be the same as the ratio of the (given) number, namely 1 + %, to what is required,
for what is required must be equal to 1 + % with its fifth. This is why we multiply

218 The elementary ratio is that involving the terms 1, z, 2. Note that, here, taking the coefficient
of the higher power equal to 1 in simple (binomial) equations is merely a formal requirement. For
trinomial equations, that is in keeping with the usual canonical forms; indeed, the solving formulae
are taught for a coefficient of the highest power equal to 1, as seen below.

219 1f the coefficient of the higher power is the integer a, the whole will be multiplied by %; if it is

q
ag+p’

a+ % = %, we shall analogously multiply the whole by Here the text is quite confusing,
and its use of a false position (see our introduction) quite inappropriate. Note that Khwarizmi
already has the simple, and correct, procedure (see, e.g., 1831, 39 (trans.), 27 (Arabic)).

220 Adding to the quantity considered, g, its fifth will change it to g. We do not obtain the
coefficient 1, though this was the requirement. We should have been told to subtract from the given

quantity its %, but the author, for whatever reason, keeps to the use of unit fractions (see note 119).
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6 by 1+ %, thus the second (proportional term) by the third, and divide that by 5,
which is the first, the result being what is required, namely the fourth.??!

(A. 589-592) Example for the subtraction. We wish to subtract from 1+ 1 its
fourth.??> We put the denominator of a fourth, thus 4, in two places, and we
subtract from one of them its fourth, which is 1, leaving 3, then we multiply 3 by
14 %, giving 4; we divide this by the denominator in the second place, which is also
4; the result is 1, and that is the answer.

The three equations involving a number, roots and squares ?23

(A. 594-602) The first (17") is “roots equal to a number.”

(7) This is like our statement “a root equals three.” So the root is 3 and the corre-
sponding square, 9.224

(it) And like our statement “four roots equal twelve.” The coefficient of the higher
(in degree; ab‘ad) of the two equated kinds, namely the quantity of the roots, is
larger than 1, for it is 4.225 So, in order to reduce it to 1, we are to subtract from
the whole we have, (thus) roots and number, their three fourths.??® We shall end
up with a root equal to 3, so the root is 3 and the corresponding square, 9.

(4i7) And like our statement “half a root is equal to 1+ 3. Since here the coefficient
of the roots is less than 1 (namely a half), what we need, to bring it to the integer
1, is to add to what we have the same. So we shall have a root equal to 3; so the
root is 3 and the corresponding square, 9.

(A. 603—611) The second equation is “squares equal to a number.”

(7) This is like our saying “a square equals nine.” So the square is 9 and the corre-

sponding root, 3.227

(7i) And like our statement “three and a third squares equal 30.” Since the coefficient
of the squares is larger than 1 and there is a fraction with it, we shall convert (basata)

2
221 With 5 becoming 6, we must have % = 123 , with z = g . g thus the required quantity. But a

simple multiplication by g would spare the reader these needless explanations.

22 Removing from the quantity considered, 3, its fourth will change it to 3.

223 Thus involving, as “simple” equations, two of these terms.

224 Same example in Khwarizmi (1831, 7 (trans.), 4 (Arabic)). Here the two following examples
end up with the same equation.

225 «The quantity of the roots,” as in the text; the article has its importance in verbal algebra, for
it indicates that the quantity referred to has already been mentioned.

226 Here the absurdity of the transformation becomes patent.

227 Same example in Khwarizmi (1831, 7 (trans.), 4 (Arabic)). Here again the two following

examples reduce to the same equation.
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that to the kind (jins) of the fraction, (namely) thirds, which gives 2. So what we
have to subtract from that, in order to reduce the (higher power) to one square, is
%, thus its %;228 and we subtract from 30 its % as well, which is 21. After that, we
shall have a square equal to 9.

(77) And like our statement “two thirds of a square equal 6.” We need here to add

to all that we have its half. After that, we shall have a square equal to 9.

(A. 612—636) The third equation is “squares equal to roots.”

(i) This is like our statement “a square equals three roots.” Since we have shown??

that the ratio of the square to the root is the same as the ratio of the root to 1, then
the ratio of the square to the three roots will be the same as the ratio of the root to
three units.?3? So the root of the square is 3 and the corresponding (17V) square is
9, which (indeed) equals three of its roots.

»231 Since

(it) And like our statement “two and a third squares equal seven roots.
the coefficient of the squares is larger than 1 and there is a fraction with it, we shall
reduce that to the kind of the fraction (thus) thirds; this gives %, which are % of
it;232 if we subtract from the seven roots their four sevenths, thus 4 (roots), there
will remain three roots, and these will be the roots equal to one square; so we shall
say that the square is equal to three roots, and so the root equals 3. (Thus) the root
is 3 and the square, 9. Twice and a third times this square is 21, and this (indeed)

equals seven of its roots.

(7i) And like our statement “two thirds of a fifth of a square is equal to a seventh
of its root.” Since the quantity of the squares is less than 1 and its denominator
(consists) of 3 by 5, thus of 15, so its % of % is % So we need for reducing it to one
integral square to add to it thirteen (times its half), thus 6 + % times itself.?33

As to the multiplication of it and what it is equal to [by 7 + 3], we shall follow
in that the method of the reasoning presented before, namely to put 1 in two places
[because of the same],?3* and add to (one of) the two places 6 + 3 times itself; this
gives 7+ % We then multiply this by the coefficient of the root, thus %, which gives
1+ %% We divide that by the second place, which is 1. [The result of the division
is 1+ %% since anything multiplied or divided by 1 remains unchanged.]?*> Then

228 Forifl—go(lfg)zl,so175:1—30,thus§:1—70.
229 A.6-7 and missing part.

230 Meaningless use of the ratio instead of the equality.

231 Reducible to the same equation as before.

_py— p_4
E)=1,s0 L =23.

22 11
2 (14 2)=1,s0 2 = 2 (1 — %) = 2. The subsequent text is partly corrupt.
231 Or: because of the (one) time. Anyway, obscurum per obscurius.

235 Seems superfluous. We have now found the new coefficient of the roots.
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we shall say that the roots equal to one square are a root plus half a seventh of
a root. According to the proportionality (tanasub) seen before,?¢ the root will be
1+ %% and the corresponding square, 1+ % + T;G'ZW If we convert the square to the
kind of the fraction, thus to 196ths, the result will be (18") 225, %% of which is 30,
which we keep in mind; next we reduce the root to the kind of this fraction, (thus
to) 196ths, which will give 210; a seventh of this is 30, which equals what was kept
in mind. [The fraction has been taken correctly.]?*® That is how to proceed.

(A. 637—642) The equality may involve any pair of powers among the other pro-

239 except that the rule for that is, if one of the two

portional powers we have named,
does not (have) the power of a number, to lower (hatta) each of the two powers by
one degree (manzila), or several, so that the one which is lower in degree turns [into
the power of the number] into the kind of the number.?*® Thus, if there are cubes
equal to (fourth) powers, we lower that by three degrees, so the cubes become a
number and the fourth powers, roots. And, if fourth powers are equal to squares, we
lower them by two degrees, so the squares become a number and the fourth powers,

squares. That is how to proceed.?*!

§2. Compound equation

(A. 645—650) Among the compound equations those which can be treated success-
fully in the science of algebra are those in which occur the (first) three of the propor-
tional elements (usul) mentioned by us before.?4? So there are (basically) three such
compound equations, which are those involving the first three elements.?*3 The first
is: squares and roots are equal to a number. The second is: squares and a number
are equal to roots. The third is: roots and a number are equal to squares. They
are the basis for the other compound equations, for these are reducible to them and
(their degrees) lowered to theirs so as to take their form, as we have explained this

for the simple equations.?**

236 Above, example 4; as useless as before (note 230).

237 15 (_ 210 2225 _ 4, 29 _ 1 2841 _q 1 1 -
That is, z = 13 (= &) and 2° = £2 =1+ 755 = 1+ 4= = 1+ = + 155. A numerical proof

of the result (considering the numerators) now follows.

238 That was just checking the answer.

239 A.38-47.

249 One of the two is a correction (both “power” and “kind” are found in this context).

241 Tmplicit: the two powers involved are either consecutive or differ by two degrees.

242 See A. 6-7.
243 Tt is understood that the powers in these trinomial equations must have consecutive degrees
and positive coefficients (no equality to 0). In the manuscript the equality is mostly expressed by
the singular of ‘adala.

244 Above, A.637-642.
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(A. 651-655) It may happen, in some of their treatments we shall make known,
that, in the equation, the coefficient of the power (manzila) with the highest (degree)
is more or less than the unit; in that case we are to reduce it to the integer 1 by
completing what is lacking (18Y) or removing what exceeds, and the same treatment
(will be applied) to the (coefficients of the) other two equated powers [so that the
three will conform to the initial ratio, whatever they were].?4> The treatment for
reducing these (quantities of the highest) kinds to a single one is (just) as we have

explained for the simple equations, without any difference.?46

(A. 656—692) Determining the side of the square in the first compound equation.?4”

You must know that the unknown (magjhul) which we are to calculate and deter-
mine in each of these three compound equations is the side of the square mentioned
in them. And what must be used for its determination in the first compound equa-
tion, namely when squares and roots are equal to a number—after reduction of the
coefficient of the squares to the integer 1 if it is less or more, and the same (transfor-
mation being applied) to the accompanying roots and number—is (the following):
we shall multiply half the quantity of the roots by itself [that is, the number of the
multiple of the quantity of half the roots],?*® the result being (then) added to the
number in the equation (al-‘adad al-mu‘adil), the root of the result being taken and
the quantity of half the roots then being subtracted from this. The remainder will

be the side of the unknown square.?4?

Example(s) of that. (i) A square and ten roots are equal to thirty-nine.20 We halve
the quantity of the roots, namely 10, so its half is 5, which we multiply by itself; this
gives 25 [which is a number since we have multiplied a number, equal to the number
of half the (quantity of) roots, and we did not multiply roots];?! then we add this
to the number, which is 39; this gives 64, of which we take the square root, which
is 8; then we subtract from it half the quantity of the roots, thus 5, which leaves 3.
This is the root of the square, and the square is 9. Ten roots of it are 30, and their

sum is 39.

245 Thus involve only the three powers obeying the proportion 1: z = z : z? (irrelevant).

246 Tn changing the coefficient of the term of highest degree to 1 the author will (again) proceed
with his addition or subtraction of some fraction of it.

247 Arabic for “compound equation”: mugtiran, abbreviation of mu‘adala mugtirana.

248 Farly reader’s correction or clarification.

249 For 2% + px = ¢, the only positive solution is = = (g)z +q — £. Before that, better: “half the
quantity of the roots.”

250 22 1 10z = 39 is the classic example. See Khwarizmi (1831, 8 (trans.), 5 (Arabic)) and second
demonstration (1831 15-16 (trans.), 10-11 (Arabic)); Abu Kamil (1986, fol. 4" (Arabic); 1966, 31
(Hebrew); 1993, 1. 62 (Latin)); also (later) ‘Umar Khayyam (Algebra, Woepcke 1851, 17/11 & 19n).

251 Same interpolator as just before.
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(77) And like our statement: Two and a third squares and seven roots are equal to
forty-two.?? Since the quantity of the squares is more than 1, we shall change it to
1. That is, we reduce it (first) to the kind of the fraction, (thus) thirds, which gives
£ (then,) since we are to subtract from this, and (also) from what we have as roots
and number, (19") its %, we follow the reasoning of the procedure seen above and
multiply both the roots and the number by 3 and divide the result by 7.253 The
result of the two (operations)?®? is that the (coefficient of the) square is equal to the
integer 1 and, having done that (for the two other terms), we shall obtain a square
and three roots equal to eighteen. Then we multiply half the quantity of the roots,
namely 1 + %, by itself, whence 2 + %, add this to the number, namely 18, whence
20 + i, and take the root of that, which is 4 + % From that, we subtract half the
quantity of the roots, namely 1 + %, which leaves 3. This is the root of the square,
and the square is 9. Doubling it and adding to the result a third of the square gives
21, and adding to that the value of seven of its roots, which is also 21, (indeed) gives
the result 42.

(7i7) And like our statement: A half and a third of a square and two and a third roots
are equal to fourteen and a half units.?>®> We need here to complete the square, that
is, to add to it, and to what there is as roots and number, its fifth.2%% Following the
reasoning of the procedure seen previously, we put the denominator of the fifth (thus
5) in two places, add to the (first) one its fifth, thus 1, which gives 6, then multiply
both (the quantity of) roots and the number by 6, and divide the result(s) by (the
number in) the second place, thus 5; the result of the two (operations) will correspond
to the equation involving one integral square. Having done that (reduction for the
other terms), we shall obtain a square and two and four fifths roots equal to the
number seventeen and two fifths. Then we multiply half the quantity of the roots,
namely 1 + %, by itself, and add the result,?>” namely 1 + % + %%, to the number,
namely 17 + %, which gives 19 + % (19) —i—%%, and take the root of that, which is
4+ % We subtract from it half the quantity of the roots, thus 1 + %, which leaves
3. Such is the root of the square, and the square is 9.

That is how to proceed for all there is and arises in that kind, God Almighty
willing.

2 (24 1) 2?4 Ta = 42, reduced to z” + 3z = 18.

253 See above, A.616-621, same reduction (equation %1’2 = Tx).

254 The two transformations (multiplication and subsequent division).

I+ 52+ (2+ 1)z =14+ 1, reduced to z* + (24 2)z = 17+ Z. Arabic: only occurrence in
this text of the (elsewhere common) dirham for “unit.”

256 GQince % + % = %

257 (1)2 _ 49 _ 2542044
5/ — 25 — 25 -
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(A. 693-708) lllustration of this treatment.?®® Since the sum of the number and
the square of half the quantity of the roots is (taken to be) a square number, we
know that the representation of the number is a gnomon (‘alam) around the square
of half the (quantity of the) roots.?>® (Now) any gnomon is equal to a square and
two complements (mutammiman);?*® so the number is equal to a square and two
complements. But it is equal to a square and ten roots;?®! therefore each of the two
complements is five roots, for each one is a rectangle the sides of which are a root,
since it is a side of (the) square, and half the quantity of the roots, thus the number

5.

Consider (therefore) that we represent the unknown square by a square [equilat-
eral and equiangular],?6? say the square ABGD. We extend its side AB in a straight
line to the point E, putting BE equal to half the quantity of the roots, and we
construct on AE the square AEZH. We extend the sides BG, DG in a straight line
towards the sides HZ, EZ.

H Z
D

G
A B E

Figure 12: Illustration of the formula for 22 + pz = ¢

Since each of the sides BG, GD is a root and each of the sides DH, BE is 5,
each of the rectangles HG, GE will be five roots, and they and the square ABGD
altogether, that is, the gnomon, (will represent) a square and ten roots, and this
equals 39. Since the square GZ is 25, the whole (square) area AZ is 64, and its

258 Remember that the equation considered is 2% + pz = ¢, with = = ‘/(5)2 + ¢ — 2, and the squares
(2)2 and (g)2 + g—thus differing by gq.

259 As seen several times before (above, note 90).

260 As seen before. Here it consists of the square AG and the two rectangular complements GH
and GE.

261 Bquation z + pz = ¢, p = 10, ¢ = 39 (note 250).

262 The word for “square,” murabba’, is sometimes used to mean any four-sided figure; but hardly
in our text, where the term has already occurred several times with the meaning of “square.” It is

obvious that this latest interpolator began directly with the part on compound equations. But see

note 104.
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root AE is 8. So if, from this, we subtract BE, which is half the quantity of the

roots, (20") thus 5, there will remain 3 for AB, which is the root of the required
(“unknown”: magjhil) square. This is what we wanted to prove.?63
(A. 709-719) Treatment of this problem by geometry, proof of it and of the reason

for halving the roots there, using segments of a straight line.?64

We wish to determine (geometrically) the side of the unknown square. We make

line AB equal to the quantity of the roots and apply (adafa) on it a rectangle?6®

equal to the given number (and) exceeding at its end by a square, as made clear in
the twenty-ninth (proposition) of the sixth Book of the Elements. Let the rectangle
be AG by GB, and BG the side of the exceeding square. I say that BG is the side

of the required (“unknown”: maghaul) square.?5

A D B G

Figure 13: Construction of the solution of 22 + pz = ¢

Proof. We halve line AB at D. Thus line AB is divided into two halves at D and
has an additional (segment), namely BG. So?7 the multiplication of AG by GB, plus
the square of DB, will equal the square of DG. But the multiplication of AG by BG
is known (ma lim) since it is equal to the given (ma‘lam) number.268 Therefore, by

263 Let the square ABGD represent z2. Extend AB by BE = £ and complete the whole square AZ,
which then comprises the squares AG and GZ and the rectangles GH and GE.

By construction, GE = GH =% z; furthermore, by the equation, GH 4+ GE 4+ AG = ¢q. Adding
to this gnomon the square GZ = (g)2 gives the whole square AZ, thus equal to (g)2 + ¢, but
also, by construction, to (z + £)?. This illustrates the formula. Same proof and figure (with the
equation z? 4 10z = 24) in Tbn Turk (Sayili 1985, 162-163 (trans.), 145-146 (Arabic)). Similar
proof in Khwarizm1 (second proof, 1831, 15-16 (trans.), 10-11 (Arabic)) and in Abu Kamil’s Algebra
(second proof, 1986, fol. 6" (Arabic); 1966, 35 (Hebrew); 1993, 1. 151 (Latin)).

264 This heading is rather misleading, as are the two similar ones later on. As indicated by the first
sentence below, this will be the geometrical construction of the solution, now taking into account
its size (see our introduction).

265 Arabic: sath qa’im al-zawaya, specified here (normally in this text sath alone means “rectangle”).
The reason may be that, in the proposition referred to below, Euclid applies a parallelogram.

266 See our introduction. Here the rectangle has base AG, height equal to BG, and it exceeds line
AB on which it is applied by the square on BG. This construction is indeed explained in Elements
VI.29.

267 According to Elements I11.6 (see our introduction).

268 Construction of a rectangle of given area (= ¢) on a segment of a straight line of given length
(= p), its height being determined by the fact that it exceeds or falls short (in this case: exceeds)

by a square area (particular case of Elements VI1.29).
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adding the square of half the (given) quantity of the roots, thus the square of DB,
to the given number, which is the rectangle AG by GB, we shall know the square
of DG. We then take its root, which is DG, and subtract from it half the (quantity
of the) roots, which is DB; this leaves BG, (thus) known, which is the side of the

(required) square. This is what we wanted to prove.2%?

(A. 720-746) Determining the side of the square in the second compound equation.

The treatment for determining the side of the square in the second compound
equation, which is “squares and a number are equal to roots”—after reducing the
squares to a single one if there are fewer or more—is (the following): we halve the
quantity of the roots, multiply this half quantity by itself, subtract from the result
the given number, take the square root of the remainder and subtract this from,
or add this to, the quantity of half the roots;>”° the result will be the root of the
required square.?’!

As we said, we “subtract” or “add” the root of the remainder; for (among the
treatments for such) algebraic problems some are solved (kharaja), (as) in (20V) this
compound equation, by both addition and subtraction, in others solely by subtrac-
tion or only by addition. Then we must verify for all the problems which reduce to
this compound equation, with each of the aforesaid aspects,?”? that they fall into the
solvable domain (hadd al-jawab); (for) in no case may, in this compound equation,
the square of half the quantity of the roots ever be less than the number which is
with the square: should that be the case, such a problem will be impossible; if they
are equal, then the root of the required square is equal to half the quantity of the
roots.

Example(s) of that.2™ A square and the number twenty-one are equal to ten roots.2"

This means that a square when increased by the number 21 gives a result equal to
ten of its roots.?”™ We halve the quantity of the roots and multiply this half quantity,

269 With AD = DB = u, BG = v (added segment), we have AG = 2u+wv, and, since (2u-+v) v+u? =
(u + v)? (Elements 11.6), AG - BG + DB®> = DG?. The sum of the square DB® (= (2)) and
the rectangle AG - BG (= q) being known, and equal to the square DG?, DG is known, so also
BG = DG — DB, that is, our =x.

210 Sic (see note 249). Also found below.

2"l For z? 4+ ¢ = pz, there are (if the discriminant is positive) two positive solutions, namely
272 When it is not yet in the canonical form.

273 Successively: case with two distinct solutions; case with one solution.

2™ 22 4+ 21 = 10x. Another classic example, found in Khwarizmi (1831, 11 (trans.), 7 (Arabic)),
Ibn Turk (Sayil 1985, 163-165 (trans.), 146-149 (Arabic)) and Abu Kamil (1986, fol. 6% (Arabic);
1966, 39 (Hebrew); 1993, 1. 200 (Latin)).

275 This useless “clarification” may well be an addition.
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thus 5, by itself, which gives 25, and subtract from it the number, namely 21, which
leaves 4; we take its square root, which is 2, then subtract it from half the quantity
of the roots, thus from 5, and this leaves 3, which is the root of the square, the
corresponding square being 9; or we add it to it, which makes 7, which is the root
of the square, the corresponding square being 49. When we add to any of these two
squares the number 21, the result will equal 10 roots of it.

As to (the case) in which the square of half (the quantity of) the roots is equal
to the number which is with the square, it is like our statement “a square and
the number twenty-five are equal to ten roots”?7® (Indeed) if we multiply half the
quantity of the roots by itself, it gives 25, just like the number. So we shall say that
the root of the square is equal to half the quantity of the roots, thus 5, with the
corresponding square being 25. When we add to this square the (given) number 25,
the sum is 50, which is equal to ten times its root.

That is how to proceed for what arises in this (21") kind, God Almighty willing.

(A. 747-765) lllustration of this treatment.2’” When the square of half the quantity
of the roots exceeds the given number by a rational quantity (‘adad majdhir),?™ we
know?"™ that the number is represented as a gnomon around the square of half the
quantity of the roots.2®? But the given number plus the unknown square is equal
to ten roots.?8! So half the gnomon plus half the (unknown) square is equal to five

282

roots. This (sum) is then (equal to) a rectangle comprised by two segments of

a straight line, one of which is the root of the unknown square and the other, a

segment equal to half the quantity of the roots.?83

Consider (therefore) that we make line AB equal to half the quantity of the roots,
on which we construct the square AG, and we put AD as the side of the unknown

276 42 125 = 102. Classic example. See Ibn Turk (Sayili 1985, 165166 (trans.), 149-150 (Arabic))
and Abu Kamil (1986, fol. 9" (Arabic); 1966, 45 (Hebrew); 1993, 1. 345 (Latin)).

277 Tllustration of the general case. The particular one, just seen, will follow (A.766-774). Other
demonstrations for the general case: Khwarizmi (1831, 16-18 (trans.), 11-13 (Arabic)); Abu Kamil
(1986, fols. 7Y, 8" (Arabic); 1966, 39 seqq. (Hebrew); 1993, 1. 257, 292 (Latin)); but in our text
these two possibilities are represented by a single figure (whence the occurrence of D and E twice
in the figure).

*"® Rather: when (£)? — g is positive (the solution is in the present case z = £ + \/(%)27_(1)

279 As seen in the illustration of the previous equation.

280 The two squares (g)2 and (g)2 — ¢, when placed with a common corner and aligned, differ by
the gnomon gq.

281 22 Lo~ g

282 1324 )= 2. g
283 The quantity 22 4 ¢ will then appear as the sum of two equal rectangles (AB-AD and AD-AZ,

with two positions of D in the figure below).
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square; it will be either smaller than AB, in the (case of) subtraction, or larger than
AB, in the (case of) addition. In both cases we construct on AD the square AE,
and we extend (akhraja) the lines of the figure. Since line AB is 5 and line AD
(represents), in both cases, the root (of the required square), the gnomon MNS plus
the square AE will be, in both cases, equal to the product of AB by AD taken twice,

thus ten roots. In the case of subtraction, this is clear.2%*
H E
7
G
M B
N S
A D B D

Figure 14: Solution of 22 + ¢ = pz, general case

In the case of addition, the gnomon MNS plus the larger square AE will be equal
to the (sum of the) two rectangles HB and ZD (the larger), for the gnomon MNS
plus the larger square AE is equal to twice the gnomon MNS, plus twice the square
EG, plus twice the rectangle GH.2®> This altogether equals twice the rectangle HB,
that is, the (sum of the) equal rectangles HB and ZD (the larger). (Now) each of
them is five roots.?86 So the given number plus the required square AE equals ten
roots.

Then MNS equals (in both situations) the given number. For this reason we
subtract it from the square AG. This leaves the square EG, (thus) known.?8” So

284 Tndeed, consider the case AD < AB. Since AB = 2, thus AG = (g)Q7 and AD = z, then
N+S=52=M+N,s0 N+ (M+N+8) = pz.

It will be inferred below that, since here N = z? while 2? + ¢ = px, we must have M+N+8S = ¢.
So\/(2)?—q=+/AG—(M+N+8S)=VEG=DB,and2=AD=AB-DB=2%2—,/(Z)>2—q.

285 Tndeed, the larger square AE, or 2?2, is made up of the gnomon M + N + S, plus the equal

squares EG and GE, plus the equal rectangles HG and GD. Furthermore, with the terms grouped,
this equals, as we are about to be told, the sum of the two rectangles ZD and HB. For, considering
the larger square, we see that AE = M+ N+ S+ EG+ GE+ HG+ GD, so M+ N+ S+ AE =
(M+N+S+EG+HG) + (M+N+S+GE+GD) = HB + ZD.

286 AB is 5, and the larger AD is x.

T EG is (2)® — g, thus the square of the discriminant, the same in both cases.
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we take its root, which is DB, subtract it from, or add it to, AB, which gives as a

remainder (21V) or as a sum AD, which is the root of the required square.?®®

(A. 766—-774) As to its illustration in the (case of ) equality, namely when the number

is equal to the square of half the quantity of the roots,?®?

we know that the repre-
sentation of the number (is a square). Since, furthermore, the sum of the number
and the (required) square is equal to a known (quantity of) roots, we know that the
representation of this sum is a rectangle comprised by two segments of a straight

290 and the other, a number

line, one of which is the root of the (required) square
equal to the quantity of the roots. Now this rectangle is divided into two square
halves, one of which is the (required) square and the other, the (given) number, and
the sum of their two sides equals the quantity of the roots.??! Therefore half the

quantity of the roots is the root of the required square.

D

A G B

Figure 15: Solution of 22 + ¢ = pz, case of equality

Consider that we put line AB equal to the given quantity of the roots. We halve
it at G and construct on each of AG and GB the squares AD and BD. Then either
of the lines AG and GB will be the root of the required square, and it equals half

the quantity of the roots.?%2

(A. 775-790) Treatment of this problem by geometry, proof of it and of the reason for
halving the roots there, using segments of a straight line.?%? If we wish to determine
the side of the unknown square, we put line AB (equal to the quantity of the roots,

288 Thus we have, in both cases 2- AB-AD = M+N+S+ AE, where 2-AB-AD = pz and AE = 22,
hence, since z° + g = pz, M+N+S = ¢. Thus, considering the two squares AE and their respective
root AD = x, and the equality of the two squares EG, we have x = AD = AB+BD = §+,/(§)? — ¢,
which illustrates the formula.

9 Equation 2° +q = px, with ¢ = (£)?. See Abu Kamil (1986, fol. 9" (Arabic); 1966, 45 (Hebrew);
1993, 1. 341 (Latin)).

290 Arabic al-mal (MS: la muhal).

291 Since pr = x® +q =% + (g)Q, with two (necessarily) equal square parts, the obvious inference
will be that z = Z.
292 Qince AB = px and G is its midpoint, AD = BD = (g)2 =22, and AG =GB = L =u.

293 Geometrical construction of the solution x knowing AB = p and the area g of the rectangle

applied on AB. The MS has the two figures, but the text refers to the right-hand one.
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and place points on it) in three places for (respectively) the (cases of) addition,
subtraction, equality [equal to the quantity of the roots].?* We apply on it a

295 equal to the given number, (but) falling short of it at its end by a

rectangle
square, as made clear from the twenty-eighth (proposition) (from the sixth Book)
of the Elements. Let the applied rectangle (al-sath al-mudaf) be the rectangle AG
by GB and the side of the square falling short, GB. Then I say that GB is the side

of the required square.

A D G B
A G D G B A G D B

Figure 16: Construction of the solution of 2% + ¢ = px

Proof. We halve line AB at the point D. Then, (considering) the two (upper)
figures, point D will fall in (the case of) subtraction between points A and G on line
AG, in the other figure, for the addition, between G and B (22") on line GB, and in
the third figure, for (the case of) equality, on point G itself. Since (in the first two
cases) line AB is divided into halves at D and into unequal parts at G, the product
of AG by GB (plus the square of DG will equal the square of DB.?% But the product
of AG by GB) is known, for it is equal to the given number;??" the square of BD
is (also) known since BD equals half the quantity of the roots. For this reason we
subtract the given number, thus the rectangle AG by GB, from the square of half
the quantity of the roots, that is, (from) the square of BD, and take the root of the
remainder, which is DG; then we subtract it from, or add it to, half the quantity of
the roots. The remainder or the sum will be the side of the required square, thus
BG.298

294 (Partial) correction to the above lacuna.

295 Again (see note 265), sath ga’im al-zawaya; specified because Euclid speaks about a parallelo-
gram.

296 By Elements I1.5, AG - GB 4+ DG? = BD?, two terms of which are known, namely AG - GB = ¢
and BD? = (£)?, whence DG = /BD? —AG-GB = ,/(2)2 —gq.

297 No early reader’s remark here, so the lacuna (obviously by homoeoteleuton) might be by our
copyist himself.

2% BG =2 =DB+DG = E+,/(5)? — q. We would now expect the case of equality to be treated.
But the text here is obviously corrupt. It is supposed to treat the case of “impossibility” (namely
(g)2 < q); in fact, it partly repeats what has already been said, then ends with stating the case
of impossibility. Using modern terms, the reasoning should be as follows. Consider the segment

of a straight line with length p (thus AB) and the part z of it (thus BG). We know that z(p — x)
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(A. 791-798) [For the (case of) impossibility, we put line AB equal to the quantity
of the roots and take BG from it as the side of the unknown square; then the product
of AB by BG will be equal to the quantity of the roots.?? But the quantity of the
roots is equal to the given number plus the unknown square, for the rectangle AB
by BG is equal to the product of AG by GB plus the square of GB. (Now) we had
put GB as the side of the required square; so the rectangle AG by GB is equal to
the given number.3%’ [Then if we halve line AB (at D), the midpoint will fall either
on the part AG or on the part GB of line AB. In both situations the product of AG
by GB plus the square of GD will be equal to the square of DB.]3*! But the product
of AG by GB, which is the (given) number, has been put3°? larger than the square
of DB, and this is not possible.]

(A. 799-807) Determining the side of the (unknown) square in the third compound
equation.

The treatment for determining the side of the (unknown) square in the third
compound equation, which is “roots and a number are equal to squares”—after
reduction of the squares to a single one if there are fewer or more (than one)—
consists in multiplying half the quantity of the roots by itself, adding that to the
number, taking the square root of the result (22V) and adding it to the quantity of
half the roots; the sum will be the root of the required square.3%3

304 Tf we wish

Example. Three roots and the number four are equal to a square.
to determine the side of the square, we multiply half the quantity of the roots, thus
1+ %, by itself, whence 2 + %, add that to the number, thus 4, whence 6 + %, take
the square root of it, which is 2 + %, then add it to the quantity of half the roots,

which is 1 + %; the result is 4, which is the root of the required square.

(A. 808-821) lllustration of this treatment. Since the sum of the number and the
square of half the quantity of the roots is a square, we know that the number is
represented by a gnomon around the square of half the quantity of the roots. The

represents the given number g. Now the area x(p — x) is maximal for x = &, that is, when this

area is a square, the given number g being then (2)?; this is the case of equality. So supposing

2
q > (%)

166-167 (trans.), 150-152 (Arabic)).

299 Equation pr = 22 + ¢, with AB = p, BG = z. “Quantity of the roots” (“idda al-ajdhar) used

is not possible, as indeed stated in the final sentence. See also Ibn Turk (Sayili 1985,

here both for our p and our pz.

300 Since pr = AB-BG = AG - BG 4+ BG? and BG? = 22, so AG - BG must be ¢.

301 This is just the previous situation and has nothing to do with the case of equality or impossibility.

302 wudi‘a, perhaps for wugi‘a, “has become.”

303 42 = pz + ¢. The only positive solution is z = 544/ (%)2 +q.
304 22 — 32 4 4. Same example in Khwarizmi (1831, 12 (trans.), 8 (Arabic)); Ab@ Kamil (1986,
fol. 10V (Arabic); 1966, 49 (Hebrew); 1993, 1. 424 (Latin)).
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side of this whole square exceeding half the quantity of the roots, it will be the root

of the required square.30°

Consider that we represent the unknown square by the [equilateral and equian-
gular]?°® square ABGD, and let BE on the side AB be equal to the quantity of
the roots. We halve EB at the point Z, and construct on AZ the square AZHT.
We extend lines ZH and HT in a straight line to meet the sides DG and BG, and
construct on AE the square AEKL. We extend lines EK and LK in a straight line
to meet the sides TH, ZH.

D G
T H

L K

A E Z B

Figure 17: Illustration of the formula for 22 = px + ¢

Now since DG is the root of the (required) (square) and DT (= ZB) is one and
a half, for it is equal to half the quantity of the roots, the rectangle TG is one and
a half (times) the root. Likewise, we shall show that the rectangle GZ is also one
and a half (times) the root. So (the sum of) the rectangles DH, once, GH, twice,
and HB, once, is equal to three roots.?%” But the area KH equals the area HG. This
leaves the (sum of the) areas TK, KA, KZ, thus the gnomon (around KH), equal to
the given number.3*® Therefore we add (this) number (23%) to the square of half

305 Part of the reasoning must be missing. There are three squares (in Fig. 17, KH, AH, AG):

@2 <@ ra<(B+/rra)
and the side of the largest will be shown to be the required x. Demonstrations of this case also in
Khwarizmi (1831, 19-20 (trans.), 13-15 (Arabic)); Ibn Turk (Sayil 1985, 168-169 (trans.), 152-153
(Arabic)), equation 2? = 4z + 5); Abti Kamil (1986, fols. 10¥, 11" (Arabic); 1966, 49, 51 (Hebrew);
1993, 1. 446, 483 (Latin).

306 See note 262.

307 Since TG = ZG = £ 2, so DH+ 2 - HG + HB = pa.

308 Since, by the equation, 2> — px = ¢ while, in the figure, > = AG and pz = TG + GZ =
TG + HG + HB = TG + KH + HB, the gnomon left in the square AH after removing the square
KH must be q.
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the quantity of the roots so as to obtain the square AH.3% We take its root, namely
AZ, and then add it to half the quantity of the roots, namely ZB; the sum is AB,
which is the root of the required square.?'? This is what we wanted to prove.

(A. 822—-833) Treatment of this problem using geometry, proof of it and of the reason
for halving the roots there, by means of segments of a straight line.

If we wish to determine in this problem the side of the unknown square, we put
line AB equal to the known quantity of the roots, and apply on it a rectangle3'!
equal to the number (and) exceeding the (segment) at its end by a square. Let the
applied rectangle be the rectangle AG by GB, and (let) BG be the side of the square
in excess. So I say that AG is the side of the unknown square.

A D B G

Figure 18: Construction of the solution of 22 = pz + ¢

Proof. We halve the known line AB at the point D. Then line AB is divided into
halves at the point D and has an additional (segment), namely BG. So the product
of AG by GB plus the square of DB equals the square of DG.3!?2 But the product
of AG by GB is known since it equals the given number, and the square of DB
is known since DB equals (half) the quantity of the roots; so the square of DG is
known. Therefore the square of half the (quantity of the) roots, thus the square of
DB, is added to the given number, thus the rectangle AG by GB, and we take the
square root of the sum; this is the root of the square of DG, that is, DG. Then we
add to it the quantity of half the roots, thus AD; the sum is AG, which is the root
of the square.?'® This is what we wanted to prove.

(A. 834—839) It has appeared clearly from the foregoing that the construction
leading to (determining) the sides of the unknown squares in each of these three
compound equations is the construction set forth by Euclid towards the end of the
sixth Book of his Elements; namely: the application on a given (23Y) segment of a

314

straight line of a (given) parallelogram®** which exceeds (this segment) at its end,

309 Since KH = (£)?, so square AH = (2)* +q.

310 Thus AB=ZB+AZ =2+ ,/(2)2 +q¢.

311 Again (see note 295), sath qa’im al-zawaya.

312 Tet AB = p be halved at D and extended by BG. Then (Elements 11.6) AG - GB 4 DB? =
DG? = ¢+ (§)*.

313 Since we know DG?, with DG = /¢ + (%)2, and AD = Z, so we also know AG = 2z =

L+ /a+(B)2

31 sath mutawazr al-adla‘. Understand: “rectangle”; see notes 265, 295, 311.
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or falls short of it, by a square.3'® That is to say, the side of the square in excess
is the side of the unknown square in the first compound equation; in the second
compound equation, it is the side of the square falling short; in the third compound
equation, it is the sum of the line on which the rectangle is applied and the side of

the square in excess. This is what we wanted to prove.?!6

(A. 840-846) Case of compound equations involving three elements not in (continued)
proportion, then of more, either in (continued) proportion or not.

This is the case for the two possible trinomial categories (hayyiz thulathi), namely,
first, cubes, squares and a number, and, second, cubes, roots and a number, consist-
ing of six compound equations (altogether).3!” Or the single possible quadrinomial
category (hayyiz ruba‘?), namely cubes, squares, roots and a number, consisting of

318

seven compound equations (altogether).”*® Or others involving higher powers. Now

(all) these do not admit of numerical (exact) procedures (giyasat ‘adadiya) as above

but only of some sort of estimation, using conic sections (qutu‘ makhrutiya).3*

(A. 847-855) Case of the two trinomial categories mentioned above. In the three
kinds they each comprise, the situation of continued proportion is not encoun-
tered.??0 For the ratio of the cube to the square is not equal to the ratio of the
square to the number since there exists one power between the square and the num-
ber, namely that of the root. Neither is the ratio of the cube to the root equal to the

321 gince there exists one power between the cube and

ratio of the root to the number
the root, namely that of the square. (Thus) each of their six forms (gara’in) is not
solvable by way of our above discourse concerning numerical procedures. Indeed,

the unknown which we must calculate and determine in each of these compound

315 Flements V1.28-29. See A.709-719, A.775-790, A.822-833 and the discussion in our introduc-
tion.

316 This last sentence might be an addition.

317 Remember that the terms may occur only with the positive signs on either side of the equation.
Hence there are three for each kind, namely, by analogy to the second-degree equations, first (with
cubes, squares, number) az® +bz? = d, az® +d = bz?, az® = ba? + d, and second (with cubes,
roots, number) az® + cx = d, az® +d = cz, ax® = cx + d. Our text omits the first (indeed banal)
binomial case of az® = d, thus reduced to the extraction of a cube root.

318 Namely axz® +bz? 4+ cx = d, az® + bz +d = cz, az® + cx + d = bz?, az® = ba? + cx + d,
az® +bz? = cx +d, ax® + cx = ba? + d, ax® +d = bz? + cx.

319 «Numerical procedures,” that is, solving formulae, like those seen above for second-degree
equations.

320 Gtill the obsession with proportions! Remember that the first step towards the general alge-
braic solution of the third-degree equation in the 16th century was precisely to remove one of the
intermediate terms.

321 This is “square” in the text, thus left uncorrected by our copyist (see note 9).
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equations is the side of the aforesaid cube, and the corresponding analysis (tahlil)
leads to the application on a given (24") segment of a straight line of a given (right)
parallelepiped (mujassam mutawazi al-sutuh) which exceeds this segment, or falls
short of it, by a cube.??? Now this can be carried out only by means of conic sections.

(A. 856—859) Quadrinomial category, thus with an additional term relative to the
(previous) three. Even if the situation of continued proportion is encountered, its
seven forms do not meet the requirement for general (numerical) procedures. For
the unknown which we must determine is the side of the aforesaid cube. Now it
cannot be expressed using the above numerical procedures but only by the aforesaid

conic sections.

(A. 860-870) Such are the foundations of algebra and the aspects of the simple and
compound equations on which are based the kinds of numerical problems subject to
exact general procedures. We have expounded them with a clear explanation and a
correct demonstration, and have treated exhaustively their elements by classifying,
ordering, revising and clarifying them. As to the (practical) problems connected
with them, we have not considered mentioning things extraneous to our purpose
and intention: these (rather) belong to the kinds of branches which rely upon the

323

foundations described by us. So let us put an end to our discourse. Praise be

to God, Lord of everything created, blessed be the esteemed Muhammad and his
family.

Made in the year 395 of the hegira
The copy was completed on Friday, the twelfth of Rabi® II in the year 581
May God be merciful towards its writer and its readers

God alone and his guidance will suffice us

322 Three-dimensional correspondents to the three types of quadratic equation seen above, thus, in
reduced form (with p the given segment of a straight line, g the given parallelepiped, > the cube),
first 2% + pa® = ¢ or 2% (x 4 p) = ¢; second, z* + ¢ = pa? or z* (p — x) = ¢; third z* = px® + ¢
or z?(x —p) =gq.

323 Unlike the usual algebra-books, our text omits applications and only expounds the elements of

algebraic reckoning.
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IV  Glossary

Sl m: 692, 746.

Jal(1): 53, 56, 58, 61, 62, 93, [100], 221, 247, 253, ... .

#1: 39, 62 (2), 64, 168, 169, 177 (2), 206, 246, 329, 330, 445, ... .
sl : 853.

(53501 862,

el 648.

I: 25, 26, [152], 255, 562, 646 (2), 647, 840, 860, 864; ( Yo 712, 779, 836.
B -
Ll [796].

Jsl: 6(2), 9, [10], 11, [12], 18, 20, 28, 34 (2), 36, 186, ...; (Ys]) 223, [234], 410, 420, 545.

<

ola: 239, 300, 325, 358, 380 (2), 403, 709, 714, 775, 782, 822, 827, 862.
Ly (1): 606, 617, 632, 634, 671.

sl 70, 71, 107, 565, 596.

s (VID: 440, 728.

& (D0 70, 77, 81, 126, 127, 356, 360, 362, (363), 368, 378, 393 (2), 520, ... .
Gl: 30, 147, 148, 149 (2), 151, 154, 156, 157, 159, ... .

&u (228, 252, 275, 311, 312, 316, 319 (cf. 322), 322, 331, 332 (2), 339, ...; (L L
cal) 23, 172,

@hae 30,33, [35], 41, 50, 51, 55, 57, 59, 61, 90, 94, [96], [97], ... .
& (D 860.

ob: 24, 48, 65, 86, 101, 119, ... ; 483.
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ol (1) : 56, 200, 249, 302, 345, 348, 363, 394, 406, 460, 613, 650, 708, ... .
ol (v): 711, 834.

oL (x): 250.

oot 75T

Ol 306, 839, 861.

451 46.

}: (1) 305, 346.

f (I : 241, 301, 405.

P\ 711, 778, 824, 837, 854.

ale: 245, 246, [298], 301, 361, 695 (2), 696.

S5 ) : 280.

(pro i) s\ 379, 480, 487.
S (X): 192,

Ll 150, [152 (2)].

Cias: 124, 125, 148, [150], 152, [153], 182.

e i 566, 653; (iLlieg i) [1], 645, 726-7, 860.

Jde (Pl sde, Slaal): 7, (7], (8], 9, 12, [14], [15], [17], 19, [20], 21, [22], 32, 33, [36], 38, 42,
5 (Jde ie) 255, 257, 263, 264, 266, 269, 444, 445 (2), ...; (w5 i) 485, 486.

9hs: 247, 288, 308, 352, 398, 403, 428, 450, 488, 497, 748.

T (m): 274,
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s 11, 12 (2), 13, 73, [73), [74 (4)], 83, 87, 88, 89 (3), 91, 92 (2), 93 (3), ... .
To£: 27,29, 30, 272, 273 (2), 283, 421, [636].

(::‘: 328, 329, 333 (2), 336 (2), 342, 344, 345, 853.

= (10 220, 223, 224, 227, 231, [234], [237], 239, 241, 268, 434, 473, ... .
&7 (U: 51,54, 59, 63, 129, 131, 133, 134, 135, 137, 138, 140, ....; 352 (Ony).
&7 (VI : [8], 92, 251, 253, 259, 265 (2), 337, 522, 662.

&7 27,28, 30, 120, 286, 287, 310, 380.

ot [22], 29, 430, 564, 692, 728, ...; (L) 388, 727, T60.

§ ses: 202, 203, 296, 304, 305, 313, 322, 324, 331, 332, 333, ... .
i1 88,90, 248, 810,

Lo 121, 122, 123 (2), 144, 145 (2), 146 (2).

i 31, 50, 67, 69, 70, 90 (2), 104, [105], [113], 121, 123, [124], 145, 146, 203, 204, ... .
ilxie: 446.

Jse2: 33, 530, 657, 663, 699, 707, T10, 725, 732, 749, ... .

Oly=: 91, 456, 464, 468, 478, 492, 495, 498, 592, 730.

Sl 63, 208.

C

do: T29.

Lo 566, 653.

glae: 169.

ol 657.

d_L"‘“’: [1].

ea> (1): 303, 428, 538, 598, 608, 611, 675, 686, 819.
L (1): 638, 640, 641.

Lame: 563, 649.

Las (1): 312, 313, 318, 321, 366, 373, 377, 411, 634.
Las (v : 515.

Laz: 368, 516, 636.
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G 862.

(&: 638.

Jul<": 853,

gl (vi: 122, 145, 169, 171, 475, 565, 569, 570, 586, ... .
JlD D: 327.

A 842, 843, 847, 856.

Ll (1v): 327, 406, 424, 696, 750, 768.
Jl: 25, 27, 28, 848, 857.

A 206, 502, 519.

Yl [791].

Jedine s 731

*

C

g~ (D5 209 (2), 458, 477, 490, 514, 523, ... .

CJ>' (V) : (doles) 193, 359, 700, 701, 754, 813, 814.

CJ.> (X): 858.

o~ 84T, 863,

CJB: . f“';
g% 196], [98], [112 (2)], 573, 574, 580, 582, 590, 591, 623, 683.

gl At 657, 852.

ﬁs\: 64.

L= (1): 300.

L= 191, 192, 193 (3), 240 (3), 248, 249, 329, 331, ... .
= (VI : 30, 174, 432, 471, 655.

= 325, 329, 785.
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N 834, 835.

B3 681.

S3(1: 26, [37], 208, 239, 409, 430, 469, 560, 729, 847, 859, 864.
551 646.
85 e 658, 853, 858.

a3 (I): 190, 197.

&), () 699, 752, 772, 811.
a0 431, 470,

w

et 192,239, 241 (2), 242, 243 (2), 244, 245 (2), 247, ... .
o g 862.

& (1): 607.

&= 563, 649.

3, (1): 480, 671, 728.

3,1 565, 568, 597, 601, 624, 652, 654, 659, 722, 801.

393 01 486.

300 729,

Ay (IV) 2 655.

gl 242, 329, 330 (2), 333, 334 (2), 337, 342, 345.

oS, (V) : 854.
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S 0t 539.

LQ

L gly: [241], [699], 711, 778, [811], 824.

sl () 122, 288, 202, 206, (298], 305, 313 (2), 321, 322, ...; 328 (o); 714, 828 ().
55U 50 122, [153), 173, 334, 336, 345, 572, 577, 579, 715, 727, ... .

A et 392, 575, 583, 810.

K151 124 (2), 125 (2), 127 (2), 147 (2), 149, 150, 154 (2), ...; 652 (_4=).

J’
Le: [1], 121, 144, 205, 709, 726, 728, 731, 775, 822, 823, 861, 862.

it 204, 506.

g 104,105 (3), 196 (2), 197, 200, 242, 243, 244 (3), ... .

CJ;M: 391.

e 169 (2).

La. (1v): 763.

el (1) : 625.

™ () 9, 33, 40, 245, 637.

™ (V) 38.

fw\: 38 (2), 40 (2); el 93: 538, 539, 541-2.
o [73].

et 568,
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5 5 (111 : 561.
Slglue: 766, 777, 784.

slas: 255, 256, 257, 332, 336, 384, 694, 695 (2), 697 ... .
slude: [19], 190, 246, 328, [699], 732, 761, [811].

Sl 562, 563, 637, 648, 649.

o
a3 (IV) : 505, 541.
CJJ 46.
Jas: 569.
UK 754, 779, 782, 783, T84.
Je¥ (v : 118, 216, 557, 845, 847, 856.

L3 (1) 220.

s bt 83 (n.45), 92, 93, 94, 109, 110, 129 (2), 130, ...; (s & N ) 182,183, 184, 187, 189.

J°
é’ 1: [636].
7= 566, GOL, 624, 653, 660, 675, 686, 861.
é’\; 861.
G o (1): 863.

xol: 326, 346, 358, 365, 367, 368, 542, 753.
Llo: 645 (lally ad)).

8,90 693, 694, 699, 747, 748, 766, T67, ... .
Lo (¢ [237], 253, [298], 308, 336, 412, 422, ... .

Sle (1) : 338.

147
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-

S

w2 (): [7], 32, 51, 53 (2), 58, 89, 90, 93, [95], [111], 168, ... .

o A2 (8], [20], 221, 27, 32, [34 (2)], 35 (2)], 39, ...; 519.

L 170 (3), 171 (3); (5, blize &l ) 170, 1715 (6 &\ ) 170, 171-2.

5 et [96], [97], [97 ()], 98], 169 (2), 181 (factors), 186, 303, ... .

axs (I): 219, 223 (n.96), [237], 239, 252, 264, 292, 295, 304, 355 (double), 679.
Cans: 226, 288, 352; (Cilas) 262, 268, 269.

amai: 27, 28, 30, 218, 219, 220, 250, 260, 263, 264, . .. .

oot 263, 264, 267, 283 (2), 300 (2), 306, 339 (2), ... .

Ol (1v): 710, 777, 824.

Blol: 836, 853.

Coliae: 780, 825, 839.

L

il 39 (2), 49, 50, 66, 67, 68 (3), 70, 71 (2), 72 (3), ... .
s b (v : 845.

s B1: 203, 500, 645.

5 Jae: 857, 861.

G b 625,

o sklas: [100], 106, 108, 222, 244, 248, 254, 260, ... .

Glae: 29, 117, 203, 308, 499, 501, 504, 539, 543 (lalles).

¢

9, 10 (2), 123 (2), 125, 126 (2), 127 (2) ...; (quantity =
(2), 80 (2), 81. See n.41.

B (quantity = coefficient)
exponent) 69, 70, 71, 76, 77
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sae: [7], 9, 10, [19], 23, 29, [73], 219, 221, ...; (4l o) 192, 212, 687, 697-8, 734, ..

(5asll).
($oas: 845, 852, 859, 861.
dgdmo: 2.
Jas (1): 560, 594 (2), 596, 599, 600, 602, 603 (2), ... .
Jae (1) : 567, 625, 653.
Uslae: 27, 556, 559, 560, 561, 562, 564 (term of an equation), 593, 603, ... .
Jolee: 565, 568, 596, 619, 630, 662, 674, 686, 840.
Jolale: 652.
JXlme: [240].
U2 (1) 25, 26, 28, 29, 32, 117, 215, 556, 564, 651.
C e (1): [234], 410, 411, 420, 421, 425, 427, 441, 465, 482, 564.
e (I): 651,
& et 50, 67, 88, 103, 205, 506, 656, 657, 658, 710, ... .
iy 5+ (26).
‘Q.B‘: 328, 334, 345, 347, 365, 366, 367, 753, ... .

S 69, 460.
de: [35], [99], 191, 239, 246, 258, 267, 283, [298], 380, 424, [429], 447, ... .

(Js (1): 68, 89, 90, 92, 104, [105], 436, 657, 694, 748, 767, 768, 808.

r‘b (gnomon) : 694 (2), 704, 748, 749, 755, 758, 759 (2), 809, 818.

149

.3 84

¢ skast () 327, 336, 338; (s5) 503, 530 (0pp. Jse2), 570 (2), 571, 572 (2), 576 (2), 711,

716 (2) ... .

J‘": 651.

o (2 192, 308, 463, 474 (2), 546, 576, 577, 675, 686, 752, ... .
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& (X): 205, 519.
e 27,29 (2), 309, 474, 548, 564, 566, 568, 570, 651, ... .
Jleszul: 570, 658, 855.

Lls: 863

et 219, 224, 274, 280, 733,

sle () 207.

(X)) 0 [114].

O (v): 31 (2), [630].

Cy.u 400, 457.

5,0 38, 215, 499, 507, 512, 518, 556, 559, 560, 561, 562, 650, 655, 860.
o2 (0: [14], [15], [17], 20.

29 et 205.

Cj 864.

Gt 224

ead (1): 383, 542.

aiie: 538, 541, 543.

Jrad: 148, 149 (2), 363, 747.

Jlage: 6,9, 11, 18, 21, [34 (2)], 168 (2), 170, 171, 172 (2), 206 (2).

A& 846.
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£ 5 (1) (Lwad) 91, [152], [235], 258, 267, 284, 308, 380, 384, 410, 420, [429], 436, 439, 447,

483, 487, 516, 626, 631, 646, 673, 683, 834, 845, 859.
£ 5 (V) : 295.

f;"‘:"’": 846.

rI\zu;e: 181, 267, 546.

w3l 69, 72, 106, 639.

o~ i 862.

iy 3: 851, 85T.

OLAs!: 840.

O e 117, 499, 518, 544.

OAGer (ke _eizl) 203, 500; (Like Vs\as) 557, 644, 645, 646, 649; (()_iia) 656, 658, 659,

720, 721, 727,729, 731, ... .

f“.; I): 54, 59, 61, 68, 76, 80, 84, [96], 104, 105, 109, 110, ... .
f‘“; (VII) : 769.
(\..g: 55, 60, 62, [542 (2)], [795 (2)].

£ (2 g ): 67,69, [70], 71, 72, 77, 81, 83, 103, 104, [105-6], 107, 108, ... .

Zeud: 27, 66, 69, 85, [98], 102, [111], 202, 203 (2), 453, 454, 461, 469; (o )l WKe) 460.

2i: 862.
f:.‘«.b

¢ sdat 1,72, 78, 82,105, 106, 107, [112], .. ; (_ke) 78, 82, 105, [113], [114], 204, 207, ... .

A (I): 863.
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